Liver-specific β-catenin knockout (β-Catenin-LKO) mice have revealed an essential role of β-catenin in metabolic zonation where it regulates pericentral gene expression and in initiating liver regeneration (LR) after partial hepatectomy (PH), by regulating expression of Cyclin-D1. However what regulates β-catenin activity in these events remains an enigma. Here, we investigate to what extent β-catenin activation is Wnt-signaling dependent and the potential cell source of Wnts. We studied liver-specific Lrp5/6 KO (Lrp-LKO) mice where Wnt-signaling was abolished in hepatocytes while the β-catenin gene remained intact. Intriguingly, like β-catenin-LKO mice, Lrp-LKO exhibited a defect in metabolic zonation observed as lack of glutamine synthetase (GS), Cyp1a2 and Cyp2e1. Lrp-LKO also displayed a significant delay in initiation of LR due to absence of β-catenin-TCF4 association and lack of Cyclin-D1. To address the source of Wnt proteins in liver, we investigated conditional Wntless (Wls) KO mice, which lacked ability to secrete Wnts from either liver epithelial cells (Wls-LKO), or macrophages including Kupffer cells (Wls-MKO), or endothelial cells (Wls-EKO). While Wls-EKO was embryonic lethal precluding further analysis in adult hepatic homeostasis and growth, Wls-LKO and Wls-MKO were viable but did not show any defect in hepatic zonation. Wls-LKO showed normal initiation of LR, however Wls-MKO showed a significant but temporal deficit in LR that was associated with decreased β-catenin-TCF4 association and diminished Cyclin-D1 expression. Conclusion Wnt-signaling is the major upstream effector of β-catenin activity in pericentral hepatocytes and during LR. Hepatocytes, cholangiocytes or macrophages are not the source of Wnts in regulating hepatic zonation. However, Kupffer cells are a major contributing source of Wnt secretion necessary for β-catenin activation during LR.
The glucagon receptor (GCGR) is a member of the class B G protein–coupled receptor family. Activation of GCGR by glucagon leads to increased glucose production by the liver. Thus, glucagon is a key component of glucose homeostasis by counteracting the effect of insulin. In this report, we found that in addition to activation of the classic cAMP/protein kinase A (PKA) pathway, activation of GCGR also induced β-catenin stabilization and activated β-catenin–mediated transcription. Activation of β-catenin signaling was PKA-dependent, consistent with previous reports on the parathyroid hormone receptor type 1 (PTH1R) and glucagon-like peptide 1 (GLP-1R) receptors. Since low-density-lipoprotein receptor–related protein 5 (Lrp5) is an essential co-receptor required for Wnt protein mediated β-catenin signaling, we examined the role of Lrp5 in glucagon-induced β-catenin signaling. Cotransfection with Lrp5 enhanced the glucagon-induced β-catenin stabilization and TCF promoter–mediated transcription. Inhibiting Lrp5/6 function using Dickkopf-1(DKK1) or by expression of the Lrp5 extracellular domain blocked glucagon-induced β-catenin signaling. Furthermore, we showed that Lrp5 physically interacted with GCGR by immunoprecipitation and bioluminescence resonance energy transfer assays. Together, these results reveal an unexpected crosstalk between glucagon and β-catenin signaling, and may help to explain the metabolic phenotypes of Lrp5/6 mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.