Background: Sclerostin, an inhibitor of Wnt signaling, binds to the -propeller domain-containing Wnt co-receptors LRP6 and LRP4. Results: An NXI motif in sclerostin mediates interactions with LRP6 (but not LRP4) and blocks Wnt1 signaling.
Conclusion:The sclerostin/LRP6 interaction shares features with the well characterized nidogen/laminin interaction. Significance: NXI motifs are important in mediating interactions with -propeller containing proteins.
Single B cell technologies, which avoid traditional hybridoma fusion and combinatorial display, provide a means to interrogate the naturally-selected antibody repertoire of immunized animals. Many methods enable the sampling of memory B cell subsets, but few allow for the direct interrogation of the plasma cell repertoire, i.e., the subset of B cells responsible for producing immunoglobulin in serum. Here, we describe the use of a robust and simple fluorescence-based technique, called the fluorescent foci method, for the identification and isolation of antigen-specific IgG-secreting cells, such as plasma cells, from heterogeneous bone marrow preparations. Following micromanipulation of single cells, cognate pairs of heavy and light chain variable region genes were recovered by reverse transcription (RT)-polymerase chain reaction (PCR). During the PCR, variable regions were combined with a promoter fragment and a relevant constant region fragment to produce two separate transcriptionally-active PCR (TAP) fragments that were directly co-transfected into a HEK-293F cell line for recombinant antibody expression. The technique was successfully applied to the generation of a diverse panel of high-affinity, functional recombinant antibodies to human tumor necrosis factor (TNF) receptor 2 and TNF derived from the bone marrow of immunized rabbits and rats, respectively. Progression from a bone marrow sample to a panel of functional recombinant antibodies was possible within a 2-week timeframe.
(2015) Functional inhibition of β-catenin-mediatedWnt signaling by intracellular VHHantibodies, mAbs, 7:1, 180-191, DOI: 10.4161/19420862.2015.989023 To link to this article: https://doi.org/10. 4161/19420862.2015 The Wnt signaling pathway is of central importance in embryogenesis, development and adult tissue homeostasis, and dysregulation of this pathway is associated with cancer and other diseases. Despite the developmental and potential therapeutic significance of this pathway, many aspects of Wnt signaling, including the control of the master transcriptional co-activator b-catenin, remain poorly understood. In order to explore this aspect, a diverse immune llama VHH phagemid library was constructed and panned against b-catenin. VHH antibody fragments from the library were expressed intracellularly, and a number of antibodies were shown to possess function-modifying intracellular activity in a luciferase-based Wnt signaling HEK293 reporter bioassay. Further characterization of one such VHH (named LL3) confirmed that it bound endogenous b-catenin, and that it inhibited the Wnt signaling pathway downstream of the destruction complex, while production of a control Ala-substituted complementarity-determining region (CDR)3 mutant demonstrated that the inhibition of b-catenin activity by the parent intracellular antibody was dependent on the specific CDR sequence of the antibody.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.