Activation of unmyelinated (C-fiber) nociceptors by noxious chemicals plays a critical role in the initiation and maintenance of injury-induced pain. C-fiber nociceptors can be divided into two groups in which one class depends on nerve growth factor during postnatal development and contains neuropeptides, and the second class depends on glial cell line-derived neurotrophic factor during postnatal development and contains few neuropeptides but binds isolectin B(4) (IB(4)). We determined the sensitivity of these two populations to protons and capsaicin using whole cell recordings of dorsal root ganglion neurons from adult mouse. IB(4)-negative unmyelinated neurons were significantly more responsive to protons than IB(4)-positive neurons in a concentration-dependent manner. Approximately 86% of IB(4)-negative neurons responded to pH 5.0 with an inward current compared with only 33% of IB(4)-positive neurons. The subtypes of proton-evoked currents in IB(4)-negative unmyelinated neurons were also more diverse. Many IB(4)-negative neurons exhibited transient, rapidly inactivating proton currents as well as sustained proton currents. In contrast, IB(4)-positive neurons never displayed transient proton currents and responded to protons only with sustained, slowly inactivating inward currents. The two classes of neurons also responded differently to capsaicin. Twice as many naïve IB(4)-negative unmyelinated neurons responded to 1 microM capsaicin as IB(4)-positive neurons, and the capsaicin-evoked currents in IB(4)-negative neurons were approximately fourfold larger than those in IB(4)-positive neurons. Interestingly, proton exposure altered the capsaicin responsiveness of the two classes of neurons in opposite ways. Brief preexposure to protons increased the number of capsaicin-responsive IB(4)-positive neurons by twofold and increased the capsaicin-evoked currents by threefold. Conversely, proton exposure decreased the number of capsaicin-responsive IB(4)-negative neurons by 50%. These data suggest that IB(4)-negative unmyelinated nociceptors are initially the primary responders to both protons and capsaicin, but IB(4)-positive nociceptors have a unique capacity to be sensitized by protons to capsaicin-receptor agonists.
C-fiber nociceptors can be divided into two groups based on growth factor dependency and isolectin B4 (IB4) binding. IB4-negative nociceptors have been proposed to contribute to inflammatory pain. Since the TRPV1 receptor is critical for inflammatory heat hyperalgesia, we hypothesized that inflammation would sensitize IB4 negative but not IB4-positive small-diameter neurons to TRPV1 stimuli. Two days after complete Freund's adjuvant (CFA)-induced inflammation in the hind paw of mice, lumbar 4/5 ganglia were dissociated and small-diameter (=26 microm) neurons were quantified for responsiveness to the TRPV1 agonists, capsaicin and protons using patch clamp recordings. Surprisingly, inflammation did not alter the responsiveness of IB4-negative neurons to capsaicin or protons. Conversely, inflammation increased the percentage of IB4-positive neurons that responded to 1 microM capsaicin from 24 to 80% and increased the percentage that responded to pH 5.0 from 54 to 85%. In parallel, inflammation increased the percentage of IB4-positive neurons that was TRPV1-immunoreactive. The inflammation-induced increase in capsaicin- and proton-responsiveness was entirely mediated by TRPV1 because IB4-positive neurons from inflamed TRPV1-/- mice were capsaicin-insensitive and unaltered in proton-responsiveness. Interestingly, comparison of neurons from TRPV1+/+ and TRPV1-/- mice revealed that the sustained proton-evoked currents in IB4-positive neurons were independent of TRPV1 whereas the sustained-only proton currents in IB4-negative neurons were TRPV1-dependent. Together, these data indicate that TRPV1 function and expression are selectively increased in IB4-positive neurons during inflammation in mouse and suggest a novel role for IB4-positive C-fibers during inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.