Bark beetles commonly produce de novo terpenoid pheromones using precursors synthesized through the mevalonate pathway. This process is regulated by Juvenile Hormone III (JH III). In this work, the expression levels of mevalonate pathway genes were quantified after phloem feeding—to induce the endogenous synthesis of JH III—and after the topical application of a JH III solution. The mevalonate pathway genes from D. rhizophagus were cloned, molecularly characterized, and their expression levels were quantified. Also, the terpenoid compounds produced in the gut were identified and quantified by Gas Chromatography Mass Spectrometry (GC-MS). The feeding treatment produced an evident upregulation, mainly in acetoacetyl-CoA thiolase (AACT), 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), phosphomevalonate kinase (PMK), and isopentenyl diphosphate isomerase (IPPI) genes, and males reached higher expression levels compared to females. In contrast, the JH III treatment did not present a clear pattern of upregulation in any sex or time. Notably, the genes responsible for the synthesis of frontalin and ipsdienol precursors (geranyl diphosphate synthase/farnesyl diphosphate synthase (GPPS/FPPS) and geranylgeranyl diphosphate synthase (GGPPS)) were not clearly upregulated, nor were these compounds further identified. Furthermore, trans-verbenol and myrtenol were the most abundant compounds in the gut, which are derived from an α-pinene transformation rather than de novo synthesis. Hence, the expression of mevalonate pathway genes in D. rhizophagus gut is not directed to the production of terpenoid pheromones, regardless of their frequent occurrence in the genus Dendroctonus.
Dendroctonus bark beetles (Scolytinae) are one of the most important disturbance agents of coniferous forests in North and Central America. These beetles spend their lives almost entirely under the tree bark, and their survival and reproductive success depend on their ability to overcome the toxic effect of the trees’ oleoresin. The cytochromes P450 (CYPs) are associated with the detoxification process of xenobiotics, as well as other physiological processes. Different cytochromes (families 4, 6, and 9) in the Dendroctonus species have been expressed under several experimental conditions; nevertheless, the expression time-course of these genes is unknown. To explore the induction speed of CYPs , we evaluated the relative expression of the CYP6BW5 , CYP6DG1 , CYP6DJ2 , CYP9Z18 , and CYP9Z20 genes at the early hours of drilling and settling into a tree (1, 2, 4, 6, 8, 12, 18 h) both in females and males, solitary or paired, of the bark beetle Dendroctonus rhizophagus Thomas and Bright. Our findings show that the five genes were rapidly overexpressed in the early hours (1 to 6 h) in both sexes and in solitary and paired conditions, suggesting their participation in the detoxification process. Additionally, the CYPs expression shows up- and down-regulation patterns through these short times, suggesting their probable participation in other physiological processes as the biosynthesis of hormones, pheromones or compounds related to reproduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.