Numerous biological approaches are available to characterise the mechanisms which govern the formation of human embryonic stem cell (hESC) colonies. To understand how the kinematics of single and pairs of hESCs impact colony formation, we study their mobility characteristics using time-lapse imaging. We perform a detailed statistical analysis of their speed, survival, directionality, distance travelled and diffusivity. We confirm that single and pairs of cells migrate as a diffusive random walk for at least 7 hours of evolution. We show that the presence of Cell Tracer significantly reduces hESC mobility. Our results open the path to employ the theoretical framework of the diffusive random walk for the prognostic modelling and optimisation of the growth of hESC colonies. Indeed, we employ this random walk model to estimate the seeding density required to minimise the occurrence of hESC colonies arising from more than one founder cell and the minimal cell number needed for successful colony formation. Our prognostic model can be extended to investigate the kinematic behaviour of somatic cells emerging from hESC differentiation and to enable its wide application in phenotyping of pluripotent stem cells for large scale stem cell culture expansion and differentiation platforms.
The maintenance of the undifferentiated state in human embryonic stem cells (hESCs) is critical for further application in regenerative medicine, drug testing and studies of fundamental biology. Currently, the selection of the best quality cells and colonies for propagation is typically performed by eye, in terms of the displayed morphological features, such as prominent/abundant nucleoli and a colony with a tightly packed appearance and a well-defined edge. Using image analysis and computational tools, we precisely quantify these properties using phase-contrast images of hESC colonies of different sizes (0.1–1.1 ) during days 2, 3 and 4 after plating. Our analyses reveal noticeable differences in their structure influenced directly by the colony area . Large colonies (A > 0.6 mm2) have cells with smaller nuclei and a short intercellular distance when compared with small colonies (A < 0.2 mm2). The gaps between the cells, which are present in small and medium sized colonies with A ≤ 0.6 mm2, disappear in large colonies (A > 0.6 mm2) due to the proliferation of the cells in the bulk. This increases the colony density and the number of nearest neighbours. We also detect the self-organisation of cells in the colonies where newly divided (smallest) cells cluster together in patches, separated from larger cells at the final stages of the cell cycle. This might influence directly cell-to-cell interactions and the community effects within the colonies since the segregation induced by size differences allows the interchange of neighbours as the cells proliferate and the colony grows. Our findings are relevant to efforts to determine the quality of hESC colonies and establish colony characteristics database.
Anvar (2021) OCT4 expression in human embryonic stem cells: spatio-temporal dynamics and fate transitions. Physical Biology, 18 (2). 026003.
We perform a detailed analysis of the migratory motion of human embryonic stem cells in two-dimensions, both when isolated and in close proximity to another cell, recorded with time-lapse microscopic imaging. We show that isolated cells tend to perform an unusual locally anisotropic walk, moving backwards and forwards along a preferred local direction correlated over a timescale of around 50 min and aligned with the axis of the cell elongation. Increasing elongation of the cell shape is associated with increased instantaneous migration speed. We also show that two cells in close proximity tend to move in the same direction, with the average separation of [Formula: see text]m or less and the correlation length of around 25 μm, a typical cell diameter. These results can be used as a basis for the mathematical modelling of the formation of clonal hESC colonies.
Human pluripotent stem cells hold great promise for developments in regenerative medicine and drug design. The mathematical modelling of stem cells and their properties is necessary to understand and quantify key behaviours and develop non-invasive prognostic modelling tools to assist in the optimisation of laboratory experiments. Here, the recent advances in the mathematical modelling of hPSCs are discussed, including cell kinematics, cell proliferation and colony formation, and pluripotency and differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.