Deletion of the chemokine receptor CXCR2 prevents the recruitment of neutrophils into tissues and subsequent development of experimental Lyme arthritis. Following footpad inoculation of Borrelia burgdorferi, the agent of Lyme disease, expression of the CXCR2 ligand KC (CXCL1) is highly upregulated in the joints of arthritis-susceptible mice and is likely to play an important role in the recruitment of neutrophils to the site of infection. To test this hypothesis, we infected C3H KC ؊/؊ mice with B. burgdorferi and followed the development of arthritis and carditis. Ankle swelling was significantly attenuated during the peak of arthritis in the KC ؊/؊ mice. Arthritis severity scores were significantly lower in the KC ؊/؊ mice on days 11 and 21 postinfection, with fewer neutrophils present in the inflammatory lesions. Cardiac lesions were also significantly decreased in KC ؊/؊ mice at day 21 postinfection. There were, however, no differences between C3H wild-type and KC ؊/؊ mice in spirochete clearance from tissues. Two other CXCR2 ligands, LIX (CXCL5) and MIP-2 (CXCL2), were not increased to compensate for the loss of KC, and the production of several innate cytokines was unaltered. These results demonstrate that KC plays a critical nonredundant role in the development of experimental Lyme arthritis and carditis via CXCR2-mediated recruitment of neutrophils into the site of infection.
Six Angus steers (319 +/- 8.5 kg) were assigned to one of two groups (hot or cold exposure) of three steers each, and placed into two environmental chambers initially maintained at 16.5-18.8 degrees C air temperature (Ta). Cold chamber Ta was lowered to 8.4 degrees C, while Ta within the hot chamber was increased to 32.7 degrees C over a 24-h time period. Measurements included respiration rate, and air and body (rectal and skin) temperatures. Skin temperature was measured at shoulder and rump locations, with determination of sweat rate using a calibrated moisture sensor. Rectal temperature did not change in cold or hot chambers. However, respiration rate nearly doubled in the heat (P < 0.05), increasing when Ta was above 24 degrees C. Skin temperatures at the two locations were highly correlated (P < 0.05) with each other and with Ta. In contrast, sweat rate showed differences at rump and shoulder sites. Sweat rate of the rump exhibited only a small increase with Ta. However, sweat rate at the shoulder increased more than four-fold with increasing Ta. Increased sweat rate in this region is supported by an earlier report of a higher density of sweat glands in the shoulder compared to rump regions. Sweat rate was correlated with several thermal measurements to determine the best predictor. Fourth-order polynomial expressions of short-term rectal and skin temperature responses to hot and cold exposures produced r values of 0.60, 0.84, and 0.98, respectively. These results suggest that thermal inputs other than just rectal or skin temperature drive the sweat response in cattle.
Dietary ingestion of (n-3) PUFA alters the production of eicosanoids and can suppress chronic inflammatory and autoimmune diseases. The extent of changes in eicosanoid production during an infection of mice fed a diet high in (n-3) PUFA, however, has not, to our knowledge, been reported. We fed mice a diet containing either 18% by weight soybean oil (SO) or a mixture with fish oil (FO), FO:SO (4:1 ratio), for 2 wk and then infected them with Borrelia burgdorferi. We used an MS-based lipidomics approach and quantified changes in eicosanoid production during Lyme arthritis development over 21 d. B. burgdorferi infection induced a robust production of prostanoids, mono-hydroxylated metabolites, and epoxide-containing metabolites, with 103 eicosanoids detected of the 139 monitored. In addition to temporal and compositional changes in the eicosanoid profile, dietary FO substitution increased the accumulation of 15-deoxy PGJ(2), an antiinflammatory metabolite derived from arachidonic acid. Chiral analysis of the mono-hydroxylated metabolites revealed they were generated from primarily nonenzymatic mechanisms. Although dietary FO substitution reduced the production of inflammatory (n-6) fatty acid-derived eicosanoids, no change in the host inflammatory response or development of disease was detected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.