Intraventricular hemorrhage (IVH) is one of the most critical complications in the development of preterm infants. The likelihood of IVH is strongly associated with disturbances in cerebral blood flow (CBF) and with microvascular fragility in the germinal matrix (GM). The CBF value and its reactivity to changes in arterial carbon dioxide pressure (pCO2) and mean arterial blood pressure (MABP) are relevant indicators in the clinical assessment of preterm infants. The objective of the present study is mathematical modeling of the influence of pCO2 and MABP on CBF in immature brain, based on clinical data collected from 265 preterm infants with 23–30 gestational weeks. The model was adapted to the peculiarities of immature brain by taking into account the morphological characteristics of the GM capillary network and vascular reactivity, according to gestational and postnatal age. An analysis of model based values of CBF and its reactivity to changes in MABP and pCO2 was performed separately for each gestational week and for the first two days of life both for preterm infants with and without IVH. The developed model for the estimation of CBF was validated against equivalent experimental measurements taken from the literature. A good agreement between the estimated values of CBF, as well as its reaction on changes in MABP and pCO2 and the equivalent values obtained in experimental studies was shown.
Intracerebral hemorrhage in preterm infants is a major cause of brain damage and cerebral palsy. The pathogenesis of cerebral hemorrhage is multifactorial. Among the risk factors are impaired cerebral autoregulation, infections, and coagulation disorders. Machine learning methods allow the identification of combinations of clinical factors to best differentiate preterm infants with intra-cerebral bleeding and the development of models for patients at risk of cerebral hemorrhage. In the current study, a Random Forest approach is applied to develop such models for extremely and very preterm infants (23-30 weeks gestation) based on data collected from a cohort of 229 individuals. The constructed models exhibit good prediction accuracy and might be used in clinical practice to reduce the risk of cerebral bleeding in prematurity.
Intraventricular cerebral hemorrhage (IVH) is one of the most severe complications of premature birth, potentially leading to lifelong disability. The purpose of this paper is the assessment of the evolution of three of the most relevant parameters, before and after IVH: mean arterial pressure (MAP), arterial carbon dioxide pressure (pCO 2), and cerebral blood flow (CBF). Clinical records of 254 preterm infants with a gestational age of 23-30 weeks, with and without a diagnosis of IVH, were reviewed for MAP and arterial pCO 2 in the period up to 7 days before and 3 days after IVH or during the first 10 days of life in cases without IVH. Conclusion: A statistically significant increase in pCO 2 and decrease in MAP in patients with IVH compared with those without were detected. Both the mean values and the mean absolute deviations of CBF were computed in this study, and the latter was significantly higher than in control group. High deviations of CBF, as well as hypercapnia and hypotension, are likely to contribute to the rupture of cerebral blood vessels in preterm infants, and consequently, to the development of IVH. What is Known: • The origin of IVH is multifactorial, but mean arterial pressure, carbon dioxide partial pressure, and cerebral blood flow are recognized as the most important parameters. • In premature infants, the autoregulation mechanisms are still underdeveloped and cannot compensate for cerebral blood flow fluctuations. What is New: • The numerical simulation of CBF is shown to be a promising approach that may be useful in the care of preterm infants. • The mean values of CBF before and after IVH in the affected group were similar to those in the control group, but the mean absolute deviations of CBF in the affected group before and after IVH were significantly higher than that in the control group. Keywords Intraventricular cerebral hemorrhage. Preterm infants. Immature brain. Mean arterial pressure. Arterial carbon dioxide pressure. Cerebral blood flow
The development of intraventricular haemorrhages ( IVH ) in preterm newborns is triggered by a disruption of the vessels responsible for cerebral microcirculation. Analysis of the stresses exerted on vessel walls enables the identification of the critical values of cerebral blood flow ( CBF ) associated with the development of IVH in preterm infants. The purpose of the present study is the estimation of these critical CBF values using the biomechanical stresses obtained by the finite element modelling of immature brain capillaries. The properties of the endothelial cells and basement membranes employed were selected on the basis of published nanoindentation measurements using atomic force microscopes. The forces acting on individual capillaries were derived with a mathematical model that accounts for the peculiarities of microvascularity in the immature brain. Calculations were based on clinical measurements obtained from 254 preterm infants with the gestational age ranging from 23 to 30 weeks, with and without diagnosis of IVH . No distinction between the affected and control groups with the gestational age of 23 to 26 weeks was possible. For infants with the gestational age of 27 to 30 weeks, the CBF value of 17.03 ml/100 g/min was determined as the critical upper value, above which the likelihood of IVH increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.