The highly homologous Cl À channels CLC-Ka and CLC-Kb are important for water and salt conservation in the kidney and for the production of endolymph in the inner ear. Mutations in CLC-Kb lead to Bartter's syndrome and mutations in the small CLC-K subunit barttin lead to Bartter's syndrome and deafness. Here we show that CLC-Ka is blocked by the recently identified blocker 2-(p-chlorophenoxy)-3-phenylpropionic acid of the rat channel CLC-K1 with an apparent K D B80 lM. We also found that DIDS (4,4 0 -diisothiocyanatostilbene-2,2 0 -disulphonic acid), a generic Cl À channel blocker, inhibits CLC-Ka (K D B90 lM). Surprisingly, the highly homologous channel CLC-Kb is fivefold to sixfold less sensitive to both compounds. Guided by the crystal structure of bacterial CLC proteins, we identify two amino acids, N68/D68 and G72/E72, in CLC-Ka and CLC-Kb, respectively, that are responsible for the differential drug sensitivity. Both residues expose their side chains in the extracellular pore mouth, delineating the probable drug binding site. These novel CLC-K channel blockers are promising lead compounds for the development of new diuretic drugs.
Opening of CLC chloride channels is coupled to the translocation of the permeant anion. From the recent structure determination of bacterial CLC proteins in the closed and open configuration, a glutamate residue was hypothesized to form part of the Cl−-sensitive gate. The negatively charged side-chain of the glutamate was suggested to occlude the permeation pathway in the closed state, while opening of a single protopore of the double-pore channel would reflect mainly a movement of this side-chain toward the extracellular pore vestibule, with little rearrangement of the rest of the channel. Here we show that mutating this critical residue (Glu166) in the prototype Torpedo CLC-0 to alanine, serine, or lysine leads to constitutively open channels, whereas a mutation to aspartate strongly slowed down opening. Furthermore, we investigated the interaction of the small organic channel blocker p-chlorophenoxy-acetic acid (CPA) with the mutants E166A and E166S. Both mutants were strongly inhibited by CPA at negative voltages with a >200-fold larger affinity than for wild-type CLC-0 (apparent KD at −140 mV ∼4 μM). A three-state linear model with an open state, a low-affinity and a high-affinity CPA-bound state can quantitatively describe steady-state and kinetic properties of the CPA block. The parameters of the model and additional mutagenesis suggest that the high-affinity CPA-bound state is similar to the closed configuration of the protopore gate of wild-type CLC-0. In the E166A mutant the glutamate side chain that occludes the permeation pathway is absent. Thus, if gating consists only in movement of this side-chain the mutant E166A should not be able to assume a closed conformation. It may thus be that fast gating in CLC-0 is more complex than anticipated from the bacterial structures.
Larval and juvenile nervous systems (NS) of three asterinid sea stars with contrasting feeding and nonfeeding modes of development were characterized using the echinoderm-specific synaptotagmin antibody. In the feeding bipinnaria and brachiolaria larvae of Patiriella regularis, the species with ancestral-type development, an extensive NS was associated with the ciliary bands (CBs) and attachment complex. Lecithotrophic planktonic (Meridastra calcar) and benthic (Parvulastra exigua) brachiolariae lacked CBs and the associated NS, but had an extensive NS in the attachment complex. The similarity in the distribution and morphology of synaptotagmin immunoreactive neurons and the anatomy of the NS in the attachment complex of these closely related sea stars suggests conservation of neurogenesis in settlement-stage larvae regardless of larval feeding mode. Nerve cells were prominent on the brachia of all three species. In advanced brachiolariae the larval nervous system was localized to the adhesive disc as the larval body resorbed during metamorphosis. The structures and tissues that contained larval neurons degenerated during metamorphosis. There was no evidence that the larval NS persists through metamorphosis. In juvenile development, synaptotagmin IR was first evident in the NS of the tube feet. As the central nervous system developed, synaptotagmin IR reflected the histological organization of the adult NS. The juvenile NS formed de novo with a temporal lapse between histogenesis and synaptotagmin IR. We evaluated the ontogeny of NS organization in the change in body plan from the bilateral larva to the radial juvenile.
1 The 2-(p-chlorophenoxy)propionic acid (CPP) modulates in a stereoselective manner the macroscopic chloride conductance (gCl), the electrical parameter sustained by the CLC-1 channel, of skeletal muscle. In order to determine the structural requirements for modulating native gCl and to identify high-affinity ligands, the effects of newly synthesised CPP analogues have been evaluated on gCl of rat EDL muscle fibres by means of the two-microelectrode current-clamp technique. 2 Each type of the following independent modification of CPP structure led to a three-to 10-fold decrease or to a complete lack of gCl-blocking activity: replacement of the electron-attractive chlorine atom of the aromatic ring, substitution of the oxygen atom of the phenoxy group, modification at the chiral centre and substitution of the carboxylic function with a phosphonate one. 3 The analogues bearing a second chlorophenoxy group on the asymmetric carbon atom showed a significant gCl-blocking activity. Similar to racemate CPP, the analogue with this group, spaced by an alkyl chain formed by three methylenic groups, blocked gCl by 45% at 100 mm.4 These latter derivatives were tested on heterelogously expressed CLC-1 performing inside-out patch-clamp recordings to further define how interaction between drug and channel protein could take place. Depending on the exact chemical nature of modification, these derivatives strongly blocked CLC-1 with K D values at À140 mV ranging from about 4 to 180 mm. 5 In conclusion, we identified four molecular determinants pivotal for the interaction with the binding site on muscle CLC-1 channels: (a) the carboxylic group that confers the optimal acidity and the negative charge; (b) the chlorophenoxy moiety that might interact with a hydrophobic pocket; (c) the chiral centre that allows the proper spatial disposition of the molecule; (d) an additional phenoxy group that remarkably stabilises the binding by interacting with a second hydrophobic pocket.
We documented expression of the pan-metazoan neurogenic gene engrailed in larval and juvenile Patiriella sea stars to determine if this gene patterns bilateral and radial echinoderm nervous systems. Engrailed homologues, containing conserved En protein domains, were cloned from the radial nerve cord. During development, engrailed was expressed in ectodermal (nervous system) and mesodermal (coeloms) derivatives. In larvae, engrailed was expressed in cells lining the larval and future adult coeloms. Engrailed was not expressed in the larval nervous system. As adult-specific developmental programs were switched on during metamorphosis, engrailed was expressed in the central nervous system and peripheral nervous system (PNS), paralleling the pattern of neuropeptide immunolocalisation. Engrailed was first seen in the developing nerve ring and appeared to be up-regulated as the nervous system developed. Expression of engrailed in the nerve plexus of the tube feet, the lobes of the hydrocoel along the adult arm axis, is similar to the reiterated pattern of expression seen in other animals. Engrailed expression in developing nervous tissue reflects its conserved role in neurogenesis, but its broad expression in the adult nervous system of Patiriella differs from the localised expression seen in other bilaterians. The role of engrailed in patterning repeated PNS structures indicates that it may be important in patterning the fivefold organisation of the ambulacrae, a defining feature of the Echinodermata.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.