This study uses a one dimensional fluid dynamics arterial network model to infer changes in hemodynamic quantities associated with pulmonary hypertension in mice. Data for this study include blood flow and pressure measurements from the main pulmonary artery for 7 control mice with normal pulmonary function and 5 hypertensive mice with hypoxia induced pulmonary hypertension. Arterial dimensions for a 21 vessel network are extracted from micro-CT images of lungs from a representative control and hypertensive mouse. Each vessel is represented by its length and radius. Fluid dynamic computations are done assuming that the flow is Newtonian, viscous, laminar, and has no swirl. The system of equations is closed by a constitutive equation relating pressure and area, using a linear model derived from stress-strain deformation in the circumferential direction assuming that the arterial walls are thin, and also an empirical nonlinear model. For each dataset, an inflow waveform is extracted from the data, and nominal parameters specifying the outflow boundary conditions are computed from mean values and characteristic time scales extracted from the data. The model is calibrated for each mouse by estimating parameters that minimize the least squares error between measured and computed waveforms. Optimized parameters are compared across the control and the hypertensive groups to characterize vascular remodeling with disease. Results show that pulmonary hypertension is associated with stiffer and less compliant proximal and distal vasculature with augmented wave reflections, and that elastic nonlinearities are insignificant in the hypertensive animal. arXiv:1712.01699v2 [physics.flu-dyn] 17 May 2018 disease progression (Castelain et al., 2001;Hunter et al., 2011). In particular, the proximal arterial stiffness is an excellent predictor of mortality in patients with pulmonary arterial hypertension (Gan et al., 2007). Quantifying relative distributions of proximal and distal arterial stiffness (or compliance) and wave reflections in elevating the mPAP and PVR is vital for understanding disease mechanisms.In this study, we setup and calibrate a mathematical model predicting wave propagation in the pulmonary vasculature in C57BL6/J male mice with normal pulmonary function (control group (CTL), n = 7) and in mice with hypoxia-induced pulmonary hypertension (hypertensive group (HPH), n = 5) (Tabima et al., 2012;Vanderpool et al., 2011). The novelty of this study is the integration of high fidelity morphometric and hemodynamic data from multiple mice with a one dimensional (1D) model of large pulmonary arteries coupled with a zero dimensional (0D) model of the vascular beds. This is achieved by incorporating available data at each stage of the modeling including network extraction, parameter estimation and model validation. The outcome is used to infer disease progression by quantifying relative changes in PVR, proximal and distal arterial stiffness, compliance, and amplitudes of wave reflections, across the two groups (CTL and HPH)...
Non-invasive ventilation is increasingly used for respiratory support in preterm infants, and is associated with a lower risk of chronic lung disease. However, this mode is often not successful in the extremely preterm infant in part due to their markedly increased chest wall compliance that does not provide enough structure against which the forces of inhalation can generate sufficient pressure. To address the continued challenge of studying treatments in this fragile population, we developed a nonlinear lumped-parameter respiratory system mechanics model of the extremely preterm infant that incorporates nonlinear lung and chest wall compliances and lung volume parameters tuned to this population. In particular we developed a novel empirical representation of progressive volume loss based on compensatory alveolar pressure increase resulting from collapsed alveoli. The model demonstrates increased rate of volume loss related to high chest wall compliance, and simulates laryngeal braking for elevation of end-expiratory lung volume and constant positive airway pressure (CPAP). The model predicts that low chest wall compliance (chest stiffening) in addition to laryngeal braking and CPAP enhance breathing and delay lung volume loss. These results motivate future data collection strategies and investigation into treatments for chest wall stiffening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.