Worldwide vaccination against SARS-CoV-2 has allowed the detection of hematologic autoimmune complications. Adverse events (AEs) of this nature had been previously observed in association with other vaccines. The underlying mechanisms are not totally understood, although mimicry between viral and self-antigens plays a relevant role. It is important to remark that, although the incidence of these AEs is extremely low, their evolution may lead to life-threatening scenarios if treatment is not readily initiated. Hematologic autoimmune AEs have been associated with both mRNA and adenoviral vector-based SARS-CoV-2 vaccines. The main reported entities are secondary immune thrombocytopenia, immune thrombotic thrombocytopenic purpura, autoimmune hemolytic anemia, Evans syndrome, and a newly described disorder, so-called vaccine-induced immune thrombotic thrombocytopenia (VITT). The hallmark of VITT is the presence of anti-platelet factor 4 autoantibodies able to trigger platelet activation. Patients with VITT present with thrombocytopenia and may develop thrombosis in unusual locations such as cerebral beds. The management of hematologic autoimmune AEs does not differ significantly from that of these disorders in a non-vaccine context, thus addressing autoantibody production and bleeding/thromboembolic risk. This means that clinicians must be aware of their distinctive signs in order to diagnose them and initiate treatment as soon as possible.
Primary immune thrombocytopenia (ITP) is an autoimmune disorder that causes low platelet counts and subsequent bleeding risk. Although current corticosteroid-based ITP therapies are able to improve platelet counts, up to 70% of subjects with an ITP diagnosis do not achieve a sustained clinical response in the absence of treatment, thus requiring a second-line therapy option as well as additional care to prevent bleeding. Less than 40% of patients treated with thrombopoietin analogs, 60% of those treated with splenectomy, and 20% or fewer of those treated with rituximab or fostamatinib reach sustained remission in the absence of treatment. Therefore, optimizing therapeutic options for ITP management is mandatory. The pathophysiology of ITP is complex and involves several mechanisms that are apparently unrelated. These include the clearance of autoantibody-coated platelets by splenic macrophages or by the complement system, hepatic desialylated platelet destruction, and the inhibition of platelet production from megakaryocytes. The number of pathways involved may challenge treatment, but, at the same time, offer the possibility of unveiling a variety of new targets as the knowledge of the involved mechanisms progresses. The aim of this work, after revising the limitations of the current treatments, is to perform a thorough review of the mechanisms of action, pharmacokinetics/pharmacodynamics, efficacy, safety, and development stage of the novel ITP therapies under investigation. Hopefully, several of the options included herein may allow us to personalize ITP management according to the needs of each patient in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.