Acute lymphoblastic leukemia (ALL) is an aggressive malignant disorder of lymphoid progenitor cells that affects children and adults. Despite the high cure rates, drug resistance still remains a significant clinical problem, which stimulates the development of new therapeutic strategies and drugs to improve the disease outcome. Antipsychotic phenothiazines have emerged as potential candidates to be repositioned as antitumor drugs. It was previously shown that the anti-histaminic phenothiazine derivative promethazine induced autophagy-associated cell death in chronic myeloid leukemia cells, although autophagy can act as a “double-edged sword” contributing to cell survival or cell death. Here we evaluated the role of autophagy in thioridazine (TR)-induced cell death in the human ALL model. TR induced apoptosis in ALL Jurkat cells and it was not cytotoxic to normal peripheral mononuclear blood cells. TR promoted the activation of caspase-8 and -3, which was associated with increased NOXA/MCL-1 ratio and autophagy triggering. AMPK/PI3K/AKT/mTOR and MAPK/ERK pathways are involved in TR-induced cell death. The inhibition of the autophagic process enhanced the cytotoxicity of TR in Jurkat cells, highlighting autophagy as a targetable process for drug development purposes in ALL.
Rosmarinus officinalis L. (rosemary) is an aromatic culinary herb. Native to the Mediterranean region, it is currently cultivated worldwide. In addition to its use as a condiment in food preparation and in teas, rosemary has been widely employed in folk medicine and cosmetics. Several beneficial effects have been described for rosemary, including antimicrobial and antioxidant activities. Here, we investigated the mechanisms accounting for the antioxidant activity of the glycolic extract of R. officinalis (Ro) in isolated rat liver mitochondria (RLM) under oxidative stress conditions. We also investigated its protective effect against acetaminophen-induced hepatotoxicity in vivo. A crude extract was obtained by fractionated percolation, using propylene glycol as a solvent due to its polarity and cosmeceutical compatibility. The quantification of substances with recognized antioxidant action revealed the presence of phenols and flavonoids. Dereplication studies carried out through LC-MS/MS and GC-MS, supported by The Global Natural Product Social Molecular Networking (GNPS) platform, annotated several phenolic compounds, confirming the previous observation. In accordance, Ro decreased the production of reactive oxygen species (ROS) elicited by Fe2+ or t-BOOH and inhibited the lipid peroxidation of mitochondrial membranes in a concentration-dependent manner in RLM. Such an effect was also observed in liposomes as membrane models. Ro also prevented the oxidation of mitochondrial protein thiol groups and reduced glutathione (GSH). In model systems, Ro exhibited a potent scavenger activity toward 2,2′-diphenyl-1-picrylhydrazyl (DPPH) radicals and superoxide anions. It also demonstrated an Fe2+ chelating activity. Moreover, Ro did not exhibit cytotoxicity or dissipate the mitochondrial membrane potential (∆Ψ) in rat liver fibroblasts (BRL3A cells). To evaluate whether such antioxidant protective activity observed in vitro could also be achieved in vivo, a well-established model of hepatotoxicity induced by acute exposure to acetaminophen (AAP) was used. This model depletes GSH and promotes oxidative-stress-mediated tissue damage. The treatment of rats with 0.05% Ro, administered intraperitoneally for four days, resulted in inhibition of AAP-induced lipid peroxidation of the liver and the prevention of hepatotoxicity, maintaining alanine and aspartate aminotransferase (ALT/AST) levels equal to those of the normal, non-treated rats. Together, these findings highlight the potent antioxidant activity of rosemary, which is able to protect mitochondria from oxidative damage in vitro, and effects such as the antioxidant and hepatoprotective effects observed in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.