The up-regulation of "tissue" transglutaminase (TG2) gene has been shown to occur in various pathologies and can lead to severe liver injury; however, its role in the onset of liver damage has not yet been clarified. To address this issue, we have used two experimental settings: carbon tetrachloride (CCl(4))-induced liver injury in wild-type and TG2 knockout mice; and liver biopsies obtained from a large cohort of hepatitis C virus (HCV)-infected patients. Mice lacking TG2 failed to clear the hepatic necrotic tissue formed in response to prolonged CCl(4) exposure (5 weeks) and 60% of them died before the end of the treatment. By contrast, wild-type mice were able to recover after the toxic insult. CCl(4)-treated TG2 null mice showed a derangement of the hepatic lobular architecture and a progressive accumulation of extracellular matrix (ECM) components and inflammatory cells which were not observed in the liver of control animals. Consistent with this protective role, we observed that TG2 levels were much higher (up to 15-fold) during the initial stages of liver fibrosis in HCV-infected individuals (METAVIR = F2) compared with uninfected controls, in which the enzyme protein localized in the hepatocytes facing the periportal infiltrate. By contrast, the enzyme levels decreased in the advanced stages (METAVIR = F3 and F4) and their localization was limited to the ECM. Our data demonstrate that TG2 plays a protective role in the liver injury by favoring tissue stability and repair.
A key feature of the macrophage-dependent clearance of apoptotic cells is the down-regulation of proinflammatory cytokines. Deficiency in the phagocytosis of apoptotic cells is often associated with the development of inflammatory reactions, resulting in chronic inflammatory and autoimmune diseases. The molecular mechanisms that regulate the engulfment process and particularly the immunomodulatory factors involved are still largely unknown in mammals. We have previously reported that the ablation of transglutaminase type II (TG2) in mice results in the defective clearance of apoptotic cells associated with the development of splenomegaly, autoantibodies, and glomerulonephritis. In this study we have investigated the mechanisms at the basis of the development of inflammation/autoimmunity associated with the defective clearance of apoptotic cells characterizing TG2 knockout mice. To this aim we compared the macrophage response to apoptotic cell exposure in wild-type vs TG2-null mice. We demonstrated that the lack of TG2 results in an impaired capacity of macrophages to engulf, but not to bind, apoptotic cells, which is paralleled by an abnormal inflammatory response both in vivo and in vitro. We have identified a differential response in the release of several cytokines in TG2−/− vs wild-type mice. Particularly relevant is the finding that both TGF-β and IL-12 regulations were significantly altered in the absence of TG2. These results help explain the autoimmune phenotype developed by these mice and suggest that TG2 is a key regulatory element of the anti-inflammatory features of apoptosis.
The pathogenesis of sepsis is characterized by the inability of the host to regulate the inflammatory response, and as a consequence, dysregulated inflammatory processes induce organ dysfunctions and death. Altered transglutaminase type II (TG2) expression is associated with the development of many inflammatory diseases. Therefore, in this study, we questioned whether TG2 could also contribute to the pathological inflammatory dysregulation occurring in septic shock in vivo. To this aim, we used as an experimental model the TG2 knockout mice, in which the process of septic shock was elicited by treatment with LPS. Interestingly, our results demonstrated that TG2 ablation leads to partial resistance to experimental sepsis. The increased survival of TG2−/− mice was reflected in a drastic reduction of organ injury, highlighted by a limited infiltration of neutrophils in kidney and peritoneum and by a better homeostasis of the proinflammatory mediators as well as mitochondrial function. We also showed that in wild-type mice, the TG2 expression is increased during endotoxemia and, being directly involved in the mechanisms of NF-κB activation, it may cause a continuous activation cycle in the inflammatory process, thus contributing to development of sepsis pathogenesis. We propose that the inhibition of TG2 could represent a novel approach in the treatment of inflammatory processes associated with sepsis.
The use of TUDCA during harvesting and cold storage of human liver is associated with significant protection from ischemia-reperfusion injury. The clinical significance of this findings must be studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.