Amebiasis, due to the pathogenic parasite Entamoeba histolytica, is a leading cause of diarrhea globally. Largely an infection of impoverished communities in developing countries, amebiasis has emerged as an important infection among returning travelers, immigrants, and men who have sex with men residing in developed countries. Severe cases can be associated with high case fatality. Polymerase chain reaction–based diagnosis is increasingly available but remains underutilized. Nitroimidazoles are currently recommended for treatment, but new drug development to treat parasitic agents is a high priority. Amebiasis should be considered before corticosteroid therapy to decrease complications. There is no effective vaccine, so prevention focuses on sanitation and access to clean water. Further understanding of parasite biology and pathogenesis will advance future targeted therapeutic and preventative strategies.
Wound healing after an injury is essential for life. An in-depth understanding of the healing process is necessary to ultimately improve the currently limited treatment options for patients suffering as a result of damage to various organs and tissues. Injuries, even the most minor, trigger an inflammatory response that protects the host and activates repair pathways. In recent years, substantial progress has been made in delineating the mechanisms by which inflammatory cytokines and their receptors facilitate tissue repair and regeneration. This mini review focuses on emerging literature on the role of the cytokine macrophage migration inhibitory factor (MIF) and its cell membrane receptor CD74, in protecting against injury and promoting healing in different parts of the body.
Understanding the mechanisms by which Entamoeba histolytica drives gut inflammation is critical for the development of improved preventive and therapeutic strategies. E. histolytica encodes a homolog of the human cytokine macrophage migration inhibitory factor (MIF). Here, we investigated the role of E. histolytica MIF (EhMIF) during infection. We found that the concentration of fecal EhMIF correlated with the level of intestinal inflammation in persons with intestinal amebiasis. Mice treated with antibodies that specifically block EhMIF had reduced chemokine expression and neutrophil infiltration in the mucosa. In addition to antibody-mediated neutralization, we used a genetic approach to test the effect of EhMIF on mucosal inflammation. Mice infected with parasites overexpressing EhMIF had increased chemokine expression, neutrophil influx, and mucosal damage. Together, these results uncover a specific parasite protein that increases mucosal inflammation, expands our knowledge of host-parasite interaction during amebic colitis, and highlights a potential immunomodulatory target.
In this study, we uncovered a mechanistic link between intestinal inflammation and repair. We showed that cluster of differentiation 74 signaling is strongly activated during intestinal inflammation, and promotes mucosal healing by enhancing intestinal epithelial cell proliferation by activating the protein kinase B and extracellular signal-regulated kinase pathways. BACKGROUND & AIMS:The inflammatory response to intestinal damage promotes healing through mechanisms that are incompletely understood. Gene expression of cluster of differentiation 74 (CD74), the receptor for cytokine macrophage migration inhibitory factor, is increased in patients with inflammatory bowel disease (IBD), however, the role of CD74 signaling in intestinal inflammation remains poorly understood. The aim of this study was to determine the functional role of CD74 signaling in intestinal inflammation. METHODS:We studied the characteristics of CD74 protein expression in human IBD and experimental colitis. The functional role of CD74 signaling in the intestine was investigated using cellular models; wild-type, CD74 -/-, and bone marrow chimera mice; neutralizing anti-CD74 antibodies; flow cytometry; immunohistochemistry; immunofluorescence; immunoblotting; and clustered regularly interspaced short palindromic repeats and associated protein 9 technology. RESULTS:In IBD patients and experimental colitis, CD74receptor protein expression was increased in inflamed intestinal tissue, prominently in the crypt epithelial cells. By using distinct but complementary chemical and non-chemically induced mouse models of colitis with genetic and antibody neutralization approaches, we found that CD74 signaling was necessary for gut repair. Mechanistically, we found that the macrophage migration inhibitory factor cytokine, which also is increased in colitis, stimulated the CD74 receptor, enhancing intestinal epithelial cell proliferation through activation of the protein kinase B and the extracellular signal-regulated kinase pathways. Our data also suggest that CD74 signaling in immune cells was not essential for mucosal healing.CONCLUSIONS: CD74 signaling is strongly activated during intestinal inflammation and protects the host by promoting epithelial cell regeneration, healing, and maintaining mucosal barrier integrity. Enhancing the CD74 pathway may represent a unique therapeutic strategy for promoting healing in IBD.
Understanding how the protozoan protein degradation pathway is regulated could uncover new parasite biology for drug discovery. We found the COP9 signalosome (CSN) conserved in multiple pathogens such as Leishmania, Trypanosoma, Toxoplasma, and used the severe diarrhea-causing Entamoeba histolytica to study its function in medically significant protozoa. We show that CSN is an essential upstream regulator of parasite protein degradation. Genetic disruption of E. histolytica CSN by two distinct approaches inhibited cell proliferation and viability. Both CSN5 knockdown and dominant negative mutation trapped cullin in a neddylated state, disrupting UPS activity and protein degradation. In addition, zinc ditiocarb (ZnDTC), a main metabolite of the inexpensive FDA-approved globally-available drug disulfiram, was active against parasites acting in a COP9-dependent manner. ZnDTC, given as disulfiram-zinc, had oral efficacy in clearing parasites in vivo. Our findings provide insights into the regulation of parasite protein degradation, and supports the significant therapeutic potential of COP9 inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.