Networks of interstitial cells of Cajal embedded in the musculature of the gastrointestinal tract are involved in the generation of electrical pacemaker activity for gastrointestinal motility. This pacemaker activity manifests itself as rhythmic slow waves in membrane potential, and controls the frequency and propagation characteristics of gut contractile activity. Mice that lack a functional Kit receptor fail to develop the network of interstitial cells of Cajal associated with Auerbach's plexus in the mouse small intestine and do not generate slow wave activity. These cells could provide an essential component of slow wave activity (for example, a biochemical trigger that would be transferred to smooth muscle cells), or provide an actual pacemaker current that could initiate slow waves. Here we provide direct evidence that a single cell, identified as an interstitial cell of Cajal by light microscopy, electron microscopy and expression of Kit mRNA, generates spontaneous contractions and a rhythmic inward current that is insensitive to L-type calcium channel blockers. Identification of the pacemaker of gut motility will aid in the elucidation of the pathophysiology of intestinal motor disorders, and provide a target cell for pharmacological treatment.
SUMMARY1. The hypothesis was addressed that a non-L-type calcium conductance is involved in the generation of the initial part of the slow-wave-type action potential in the canine colon.2. In the absence of a sodium and chloride gradient (NaCl replaced by glucamine), and in the presence of nitrendipine (in 'glucamine-nitrendipine' Krebs solution), a major portion of the upstroke potential of the slow wave persists at unchanged frequency.3. In 'glucamine-nitrendipine' Krebs solution, the rate of rise and amplitude of the upstroke potential is reduced by removal of extracellular calcium in a concentration-dependent manner.4. The rate ofrise and the amplitude of the upstroke potential is in a concentrationdependent manner reduced by Ni2+ > Cd2+ > Co2+ > Mg2+. 5. In 'glucamine-nitrendipine' Krebs solution, Ba2+ cannot replace Ca2+ in the generation of the upstroke potential. 6. Positive evidence was obtained for the hypothesis that a non-L-type calcium conductance is involved in the initiation of the slow-wave-type action potential in colonic smooth muscle.
Intrinsic electrical activities in various isolated segments of the mouse small intestine were recorded (i) to characterize action potential generation and (ii) to obtain a profile on the ion channels involved in initiating the slow wave type action potentials (slow waves). Gradients in slow wave frequency, resting membrane potential, and occurrence of spiking activity were found, with the proximal intestine exhibiting the highest frequency, the most hyperpolarized cell membrane, and the greatest occurrence of spikes. The slow waves were only partially sensitive to L-type calcium channel blockers. Nifedipine, verapamil, and pinaverium bromide abolished spikes that occurred on the plateau phase of the slow waves in all tissues. The activity that remained in the presence of L-type calcium channel blockers, the upstroke potential, retained a similar amplitude to the original slow wave and was of identical frequency. The upstroke potential was not sensitive to a reduction in extracellular chloride or to the sodium channel blockers tetrodotoxin and mexiletine. Abolishment of the Na+ gradient by removal of 120 mM extracellular Na+ reduced the upstroke potential frequency by 13 - 18% and its amplitude by 50 - 70% in the ileum. The amplitude was similarly reduced by Ni2+ (up to 5 mM), and by flufenamic acid (100 mu M), a nonspecific cation and chloride channel blocker. Gadolinium, a nonspecific blocker of cation and stretch-activated channels, had no effect. Throughout these pharmacological manipulations, a robust oscillation remained at 5 - 10 mV. This oscillation likely reflects pacemaker activity. It was rapidly abolished by removal of extracellular calcium but not affected by L-type calcium channel blockers. In summary, the mouse small intestine has been established as a model for research into slow wave generation and electrical pacemaker activity. The upstroke part of the slow wave has two components, the pacemaker component involves a non-L-type calcium channel.
The network of interstitial cells of Cajal associated with Auerbach's (myenteric) plexus in the canine colon was investigated to determine its role in facilitating communication between circular and longitudinal muscle layers. Electrical coupling between the muscle layers was demonstrated by propagating extracellularly evoked electrotonic pulses from circular muscle cells to nearby longitudinal muscle cells. The likelihood of cytoplasmic continuity across Auerbach's plexus was further demonstrated by the ability of neurobiotin to spread between the interstitial cells and the circular and longitudinal muscle cells. Importantly, direct neurobiotin spread between circular and longitudinal muscle cells was not observed even when they were in close proximity as determined by confocal microscopy. When neurobiotin did spread across the two muscle layers, the intervening interstitial cells were always neurobiotin-positive. In regions where circular and longitudinal muscle cells approach each other closely, electron microscopy revealed the presence of close appositions between interstitial cells and smooth muscle cells. Gap junctions between interstitial cells and smooth muscle cells of both layers, as judged by electron microscopy, were extremely rare. Neither gap junctions nor close appositions were observed between longitudinal and circular muscle cells. The special arrangement for electrotonic coupling across Auerbach's plexus through interstitial cells of Cajal suggests controlled coupling between the two muscle layers, explaining the preservation of their distinct electrical activities.
Intercellular communication within the musculature of the canine colon was studied by examining the results of neurobiotin diffusion after injection of the tracer into smooth muscle cells at different locations within the muscle layer. Circular muscle at the submucosal surface, circular muscle adjacent to the myenteric plexus, and longitudinal muscle demonstrated different degrees of time-dependent tracer spread. At the submucosal surface, tracer spread was rapid, extensive, and unimpeded by connective tissue septa. At the myenteric side, tracer spread was also extensive but was much slower and confined to bundles of cells bordered by septa. In contrast to previous studies that suggest an absence of gap junctions at the myenteric side of the circular muscle, the neurobiotin spread indicates full metabolic coupling of all circular smooth muscle cells. Furthermore, in contrast to the belief that longitudinal muscle is completely devoid of gap junctions, tracer spread occurred between cells in this layer, although neurobiotin diffusion was very limited, nonuniform, and slow. In each area of the musculature studied, tracer spread was inhibited by octanol. When very long injection and wait times were implemented at the submucosal surface of the circular muscle, neurobiotin was observed to cross septa through the network of interstitial cells of Cajal, indicating that it is this network that provides communication between lamellae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.