Dairy mountain farms are economically disadvantaged due to small farm size and high production costs. However, these farms are of importance for the preservation of traditional landscapes and biodiversity, especially when they are managed extensively. The present study compares the economic situation of mountain dairy farms in South Tyrol that differ with respect to the amount of concentrates fed (low-input vs. high-input) and the breed used (Tyrolean Grey vs. Brown Swiss). The calculations show that low-input farms have lower variable costs but similar fixed costs and lower revenues compared to high-input farms. As a result, high-input farms are economically superior to low-input farms in terms of income per farm, per ha and per kg energy-corrected milk. Regarding the breeds, farms using the local breed Tyrolean Grey can compete with farms using the high-yielding breed Brown Swiss when subsidies are considered because of special payments for an endangered breed. The dominance of high-input farms can be explained with economies of scale and the milk to feed price ratio of about 1.8. Thus, the currently paid high milk price makes it economically worthwhile to produce as much milk as possible. The results thus point to the risk of intensification or abandonment of small mountain farms. In order to improve their economic situation and thus maintain small and low-input mountain dairy farms, it might be an option to connect subsidies with the feeding strategy and farm structure, pay premiums for value-added milk products or use taxes for concentrated feed to support extensive farms. HIGHLIGHTS Low-input farms achieve lower farm income Only small differences in farm income between breeds Herd size and milk yield per cow are decisive for farm income ARTICLE HISTORY
Several studies on the environmental impacts of livestock enterprises are based on the application of life cycle assessments (LCA). In Alpine regions, soil carbon sequestration can play an important role in reducing environmental impacts. However, there is no official methodology to calculate this possible reduction. Biodiversity plays an important role in the Alpine environment and is affected by human activities, such as cattle farming. Our aim was to estimate the carbon footprint (CF) of four different dairy production systems (different in breeds and feeding intensity) by using the LCA approach. The present study included 44 dairy Alpine farms located in the autonomous province of Bolzano in northern Italy. Half of the farms (n = 22) kept Alpine Grey and the other half (n = 22) Brown Swiss cattle. Within breeds, the farms were divided by the amount of concentrated feed per cow and day into high concentrate (HC) and low concentrate (LC). This resulted in 11 Alpine Grey low concentrate (AGLC) farms feeding an average amount of 3.0 kg concentrated feed/cow/day and 11 Alpine Grey high concentrate (AGHC) farms with an average amount of 6.3 kg concentrated feed/cow/day. Eleven farms kept Brown Swiss cows with an average amount of 3.7 kg concentrated feed/cow/day (BSLC) and another 11 farms feeding on average 7.6 kg concentrated feed/cow/day (BSHC). CF for the four systems was estimated using the LCA approach. The functional unit was 1 kg of fat and protein corrected milk (FPCM). Furthermore, two methodologies have been applied to estimate soil carbon sequestration and effect on biodiversity. The system with the lowest environmental impact in terms of CF was BSHC (1.14 kg CO2-eq/kg of FPCM), while the most impactful system was the AGLC group (1.55 kg CO2-eq/kg of FPCM). Including the CF reduction due to soil carbon sequestered from grassland, it decreased differently for the two applied methods. For all four systems, the main factor for CF was enteric emission, while the main pollutant was biogenic CH4. Conversely, AGLC had the lowest impact when the damage to biodiversity was considered (damage score = 0.41/kg of FPCM, damage to ecosystem diversity = 1.78 E-07 species*yr/kg FPCM). In comparison, BSHC had the greatest impact in terms of damage to biodiversity (damage score = 0.56/kg of FPCM, damage to ecosystem diversity = 2.49 E-07 species*yr/kg FPCM). This study indicates the importance of including soil carbon sequestration from grasslands and effects on biodiversity when calculating the environmental performance of dairy farms.
We investigated and compared the effects of low and high concentrate supplementation in terms of animal welfare, health and reproductive performance in two different dairy cow breeds on small-scale mountain farms. 64 South Tyrolean dairy farms were evaluated using an on-farm assessment for animal-based and resource-based welfare indicators, data from test day records, and a questionnaire for the farmer. Farms were divided into four groups: low input Tyrolean Grey (L-TG), low input Brown Swiss (L-BS), high input Tyrolean Grey (H-TG) and high input Brown Swiss (H-BS). Effects of intensity level, breed and their interaction were calculated and analyzed statistically. The predominant husbandry system across all groups was tie-stall. The average energy-corrected milk yield increased with increasing concentrate level, with L-TG showing the lowest and H-BS showing the highest milk yield. Age at first calving was lowest in H-BS when compared to all other systems, while numbers of lactations were higher in L-TG compared to H-BS. Feed efficiency (percentage of milk out of roughage) was significantly higher in L-TG and L-BS when compared to H-TG and H-BS. L-BS showed the poorest results for most of the welfare indicators such as lean cows, lesions and percentage of dirty animals. In conclusion, a higher concentrate level in diets does not lead automatically to lower animal welfare for dairy cows in alpine regions. Indeed, keeping high yielding breeds in extensive systems seems to be challenging. The dual-purpose breed TG showed some clear advantages in that calving interval was lower and the number of lactations greater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.