BackgroundWild bees are important pollinators that have declined in diversity and abundance during the last decades. Habitat destruction and fragmentation associated with urbanization are reported as part of the main causes of this decline. Urbanization involves dramatic changes of the landscape, increasing the proportion of impervious surface while decreasing that of green areas. Few studies have investigated the effects of urbanization on bee communities. We assessed changes in the abundance, species richness, and composition of wild bee community along an urbanization gradient.Methodology/Principal FindingsOver two years and on a monthly basis, bees were sampled with colored pan traps and insect nets at 24 sites located along an urbanization gradient. Landscape structure within three different radii was measured at each study site. We captured 291 wild bee species. The abundance of wild bees was negatively correlated with the proportion of impervious surface, while species richness reached a maximum at an intermediate (50%) proportion of impervious surface. The structure of the community changed along the urbanization gradient with more parasitic species in sites with an intermediate proportion of impervious surface. There were also greater numbers of cavity-nesting species and long-tongued species in sites with intermediate or higher proportion of impervious surface. However, urbanization had no effect on the occurrence of species depending on their social behavior or body size.Conclusions/SignificanceWe found nearly a third of the wild bee fauna known from France in our study sites. Indeed, urban areas supported a diverse bee community, but sites with an intermediate level of urbanization were the most speciose ones, including greater proportion of parasitic species. The presence of a diverse array of bee species even in the most urbanized area makes these pollinators worthy of being a flagship group to raise the awareness of urban citizens about biodiversity.
Most bees display an array of strategies for building their nests, and the availability of nesting resources plays a significant role in organizing bee communities. Although urbanization can cause local species extinction, many bee species persist in urbanized areas. We studied the response of a bee community to winter-installed humanmade nesting structures (bee hotels and soil squares, i.e. 0.5 m deep holes filled with soil) in urbanized sites. We investigated the colonization pattern of these structures over two consecutive years to evaluate the effect of age and the type of substrates (e.g. logs, stems) provided on colonization. Overall, we collected 54 species. In the hotels, two gregarious species, Osmia bicornis L. and O. cornuta Latr. dominated the community (over 87 % of the data). Over 2 years, the age of the soil squares did not affect their level of colonization and the same was true for the hotels with respect to O. bicornis and 'other species'. However, O. cornuta occurred less often and raised fewer descendants in 1-year old hotels than in new ones. Bee nesting was not affected by the soil texture and, among above-ground nesting bees, only O. bicornis showed a preference for some substrates, namely Acer sp. and Catalpa sp. In a context of increasing urbanization and declining bee populations, much attention has focused upon improving the floral resources available for bees, while little effort has been paid to nesting resources. Our results indicate that, in addition to floral availability, nesting resources should be taken into account in the development of urban green areas to promote a diverse bee community. Keywords Wild bees Á Nesting resource availability Á Nest-site fidelity Á Phylopatry Á Nest-site selection Á Substrate quality Á Human-made nesting structures Á Urban area This work is dedicated in memoriam of Robert Fonfria.
Despite a large number of ecological studies that document diversity loss resulting from anthropogenic disturbance, surprisingly few consider how disturbance affects temporal patterns of diversity that result from seasonal turnover of species. Temporal dynamics can play an important role in the structure and function of biological assemblages. Here, we investigate the temporal diversity patterns of bee faunas in Southern California coastal sage scrub ecosystems that have been extensively fragmented by urbanization. Using a two-year data-set of 235 bee species (n = 12,036 specimens), we compared 1-ha plots in scrub fragments and scrub reserves with respect to three components of temporal diversity: overall plot-level diversity pooled over time (temporal gamma diversity), diversity at discrete points in time (temporal alpha diversity), and seasonal turnover in assemblage composition (temporal beta diversity). Compared to reserves, fragments harbored bee assemblages with lower species richness and assemblage evenness both when summed across temporal samples (i.e., lower temporal gamma diversity) and at single points in time (i.e., lower temporal alpha diversity). Bee assemblages in fragments also exhibited reduced seasonal turnover (i.e., lower temporal beta diversity). While fragments and reserves did not differ in overall bee abundance, bee abundance in fragments peaked later in the season compared to that in reserves. Our results argue for an increased awareness of temporal diversity patterns, as information about the distinct components of temporal diversity is essential both for characterizing the assemblage dynamics of seasonal organisms and for identifying potential impacts of anthropogenic disturbance on ecosystem function through its effects on assemblage dynamics.
Wild bees are declining, mainly due to the expansion of urban habitats that have led to land-use changes. Effects of urbanization on wild bee communities are still unclear, as shown by contrasting reports on their species and functional diversities in urban habitats. To address this current controversy, we built a large dataset, merging 16 surveys carried out in 3 countries of Western Europe during the past decades, and tested whether urbanization influences local wild bee taxonomic and functional community composition. These surveys encompassed a range of urbanization levels, that were quantified using two complementary metrics: the proportion of impervious surfaces and the human population density. Urban expansion, when measured as a proportion of impervious surfaces, but not as human population density, was significantly and negatively correlated with wild bee community species richness. Taxonomic dissimilarity of the bee community was independent of both urbanization metrics. However, occurrence rates of functional traits revealed significant differences between lightly and highly urbanized communities, for both urbanization metrics. With higher human population density, probabilities of occurrence of above-ground nesters, generalist and small species increased. With higher soil sealing, probabilities of occurrence of above-ground nesters, generalists and social bees increased as well. Overall, these results, based on a large European dataset, suggest that urbanization can have negative impacts on wild bee diversity. They further identify some traits favored in urban environments, showing that several wild bee species can thrive in cities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.