Two rums differing in their overall aroma profile and price level (rum A, high price; rum B, low price) were analyzed by means of the Sensomics approach. Application of aroma extract dilution analysis (AEDA) on a distillate of volatiles prepared from rum A revealed 40 aroma-active compounds in the flavor dilution (FD) factor range from 8 to 2048. The identification experiments indicated cis-whiskey lactone, vanillin, decanoic acid, and 2- and 3-methylbutanol with the highest FD factors. The AEDA of a distillate prepared from rum B showed only 26 aroma-active compounds in the same FD factor range. Among them, in particular, ethyl butanoate, 1,1-diethoxyethane, ethyl (S)-2-methylbutanoate, and decanoic acid appeared with the highest FD factors. Thirty-seven compounds having at least an FD factor ≥32 in one of the two rums were quantitated using stable isotope dilution assays or enzyme kits (2 compounds). The calculation of odor activity values (OAVs; ratio of concentration to respective odor threshold) indicated ethanol, vanillin, ethyl (S)-2-methylbutanoate, and (E)-β-damascenone with the highest OAVs in rum A, whereas ethanol, 2,3-butanedione, 3-methylbutanal, and ethyl butanoate revealed the highest OAVs in rum B. Most compounds were present in similar concentrations in both rums, but significant differences were determined for vanillin, cis-whiskey lactone, and 4-allyl-2-methoxyphenol (all higher in rum A) and 3-methylbutanal, 2,3-butanedione, and ethyl butanoate (all higher in rum B). Finally, the aromas of both rums were successfully simulated by a recombinate using reference odorants in the same concentrations as they naturally occurred in the spirits.
The production of rum consists of fermentation, distillation, and aging. To check the influence of each step on the final rum aroma, molasses, mash, distillate, and the final rum were analyzed using the sensomics concept. The changes in key aroma compounds were determined by application of aroma extract dilution analysis (AEDA) in combination with gas chromatography-mass spectrometry for identification and by stable isotope dilution assays (SIDAs) for quantitation. Odor activity values (OAVs; ratio of concentration to respective odor threshold) were calculated for the compounds determined in the rum and, finally, the rum aroma was successfully simulated by recombination. (E)-β-Damascenone showed by far the highest OAV (3280) in rum. Although this compound was determined already in molasses, its concentration increased significantly during distillation, indicating a thermolabile precursor. Vanillin, 4-ethylphenol, 2-methoxyphenol, 4-ethyl-2-methoxyphenol, and 2-methoxy-4-propylphenol are well-known compounds mainly stemming from the wood barrels used for aging and showed an OAV ≥ 1. Another important group of aroma-active compounds in rum were ethyl esters, for which a significant increase was determined during fermentation but also to a lesser extent during aging. Altogether, the concentrations of 68% of the aroma-active compounds increased during the process, demonstrating its influence on the overall rum aroma.
A large set of volatiles (a metabolome) was isolated by SAFE distillation from 25 high priced rums prepared from sugar cane juice (SCJ) and 26 high priced rums manufactured from sugar cane molasses (SCM). The volatile fractions were first analyzed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOF-MS), and the "comprehensive template matching fingerprinting" was used to extract the entire features present in the respective set of volatile compounds. After raw data pretreatment, chemometrics was used to locate marker compounds. Following, a sparse-partial-least-squares discriminant analysis ( sPLS-DA) and a partial-least-squares discriminant analysis (PLS-DA) were applied to a training data set for creating a model. The model was validated using leave-one-out cross validation and tested over an independent data set to evaluate its predictive power. The characteristic fingerprint resulted in a 100% correct classification of sugar cane juice rums, thus achieving the first aim of locating markers for these higher quality rums. Then, past-processing identification within the discriminant features was done to characterize 12 significant marker compounds as 1-decanol, γ-dodecalactone, ethyl 3-methylbutanoate, ethyl nonanoate, 3-furancarboxaldehyde, 1-hexanol, β-ionone, 2- and 3-methylbutanol, methyl decanoate, 3-octanol, and 2-undecanone. Quantitation of eight selected markers by stable isotope dilution assays confirmed higher concentrations in SCJ compared to SCM and served as the final proof to differentiate both types of spirits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.