The broad research use of organoids from high-grade serous ovarian carcinoma (HGSC) has been hampered by low culture success rates and limited availability of fresh tumor material. Here we describe a method for generation and long-term expansion of HGSC organoids with efficacy markedly improved over previous reports (55% vs. 23-38%). We established organoids from cryopreserved material, demonstrating the feasibility of using viably biobanked tissue for HGSC organoid derivation. Genomic, histologic and single-cell transcriptomic analyses revealed that organoids recapitulated genetic and phenotypic features of original tumors. Organoid drug responses correlated with clinical treatment outcomes, although in culture conditions-dependent manner and only in organoids maintained in human plasma-like medium (HPLM). Organoids from consenting patients are available to the research community through a public biobank and organoid genomic data explorable through an interactive online tool. Taken together, this resource facilitates the application of HGSC organoids in basic and translational ovarian cancer research.
Highlights d The bacterial genotoxin CDT induces senescence and a SASP in activated CD4 T cells d ATM plays a key role in orchestrating the SASP but not in the induction of senescence d ATM orchestrates the SASP via downstream activation of the p38 MAPK d Infection with genotoxigenic bacteria increases the proportion of GL13 + T cells in vivo
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.