We studied the subcellular levels of melatonin in cerebral cortex and liver of rats under several conditions. The results show that melatonin levels in the cell membrane, cytosol, nucleus, and mitochondrion vary over a 24-hr cycle, although these variations do not exhibit circadian rhythms. The cell membrane has the highest concentration of melatonin followed by mitochondria, nucleus, and cytosol. Pinealectomy significantly increased the content of melatonin in all subcellular compartments, whereas luzindole treatment had little effect on melatonin levels. Administration of 10 mg/kg bw melatonin to sham-pinealectomized, pinealectomized, or continuous light-exposed rats increased the content of melatonin in all subcellular compartments. Melatonin in doses ranging from 40 to 200 mg/kg bw increased in a dose-dependent manner the accumulation of melatonin on cell membrane and cytosol, although the accumulations were 10 times greater in the former than in the latter. Melatonin levels in the nucleus and mitochondria reached saturation with a dose of 40 mg/kg bw; higher doses of injected melatonin did not further cause additional accumulation of melatonin in these organelles. The results suggest some control of extrapineal accumulation or extrapineal production of melatonin and support the existence of regulatory mechanisms in cellular organelles, which prevent the intracellular equilibration of the indolamine. Seemingly, different concentrations of melatonin can be maintained in different subcellular compartments. The data also seem to support a requirement of high doses of melatonin to obtain therapeutic effects. Together, these results add information that assists in explaining the physiology and pharmacology of melatonin.
Coenzyme Q10 (CoQ(10)) or ubiquinone is a well-known component of the mitochondrial respiratory chain. In humans, CoQ(10) deficiency causes a mitochondrial syndrome with an unexplained variability in the clinical presentations. To try to understand this heterogeneity in the clinical phenotypes, we have generated a Coq9 Knockin (R239X) mouse model. The lack of a functional Coq9 protein in homozygous Coq9 mutant (Coq9(X/X)) mice causes a severe reduction in the Coq7 protein and, as consequence, a widespread CoQ deficiency and accumulation of demethoxyubiquinone. The deficit in CoQ induces a brain-specific impairment of mitochondrial bioenergetics performance, a reduction in respiratory control ratio, ATP levels and ATP/ADP ratio and specific loss of respiratory complex I. These effects lead to neuronal death and demyelinization with severe vacuolization and astrogliosis in the brain of Coq9(X/X) mice that consequently die between 3 and 6 months of age. These results suggest that the instability of mitochondrial complex I in the brain, as a primary event, triggers the development of mitochondrial encephalomyopathy associated with CoQ deficiency.
SignificanceAlzheimer’s disease (AD) is the most common cause of age-related neurodegeneration. Damage initially occurs in the hippocampus, a neurogenic brain region essential in forming memories. Since there is no cure for AD, therapeutic strategies that may aid to slow hippocampal dysfunction are necessary. We describe the precocious hippocampal stem cell loss of a mouse model that mimics the onset of pathological AD-like neurodegeneration. The loss is due to an increase in BMP6 that limits neurogenesis. We demonstrate that blocking BMP signaling by means of Noggin administration is beneficial to the hippocampal microenvironment, restoring stem cell numbers, neurogenesis, and behavior. Our findings support further development of BMP antagonists into translatable molecules for the rescue of stem cells and neurogenesis in neurodegeneration/aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.