Background: KwaZulu-Natal, one of South Africa's three malaria endemic provinces, is nearing malaria elimination, reporting fewer than 100 locally-acquired cases annually since 2010. Despite sustained implementation of essential interventions, including annual indoor residual spraying, prompt case detection using malaria rapid diagnostics tests and treatment with effective artemisinin-based combination therapy, low-level focal transmission persists in the province. This malaria prevalence and entomological survey was therefore undertaken to identify the drivers of this residual transmission.Methods: Malaria prevalence as well as malaria knowledge, attitudes and practices among community members and mobile migrant populations within uMkhanyakude district, KwaZulu-Natal were assessed during a communitybased malaria prevalence survey. All consenting participants were tested for malaria by both conventional and highlysensitive falciparum-specific rapid diagnostic tests. Finger-prick filter-paper blood spots were also collected from all participants for downstream parasite genotyping analysis. Entomological investigations were conducted around the surveyed households, with potential breeding sites geolocated and larvae collected for species identification and insecticide susceptibility testing. A random selection of households were assessed for indoor residual spray quality by cone bioassay.
Background The South African province of KwaZulu-Natal is rapidly approaching elimination status for malaria with a steady decline in local cases. With the possibility of achieving elimination in reach, the KZN malaria control programme conducted a critical evaluation of its practices and protocols to identify potential challenges and priorities to achieving elimination. Three fundamental questions were addressed: (1) How close is KZN to malaria elimination; (2) Are all systems required to pursue subnational verification of elimination in place; and (3) What priority interventions must be implemented to reduce local cases to zero? Methods Based on the 2017 World Health Organization Framework for Elimination, twenty-eight requirements were identified, from which forty-nine indicators to grade elimination progress were further stratified. Malaria data were extracted from the surveillance system and other programme data sources to calculate each indicator and semi-quantitatively rate performance into one of four categories to assess the provinces elimination preparedness. Results Across the key components a number of gaps were elucidated based on specific indicators. Out of the 49 indicators across these key components, 10 indicators (20%) were rated as fully implemented/well implemented, 11 indicators (22%) were rated as partially done/somewhat implemented/activity needs to be strengthened, and 12 indicators (24%) were rated as not done at all/not implemented/poor performance. Sixteen indicators (33%) could not be calculated due to lack of data or missing data. Conclusions The critical self-evaluation of programme performance has allowed the KZN malaria programme to plan to address key issues moving forward. Based on the findings from the checklist review process, planning exercises were conducted to improve lower-rating indicators, and a monitoring and evaluation framework was created to assess progress on a monthly basis. This is scheduled to be reviewed annually to ensure continued progress toward meeting the elimination goal. In addition, multiple dissemination meetings were held with both provincial senior management and operational staff to ensure ownership of the checklist and its action plan at all levels. Electronic supplementary material The online version of this article (10.1186/s12936-019-2739-5) contains supplementary material, which is available to authorized users.
Background As surveillance is a key strategy for malaria elimination in South Africa, ensuring strong surveillance systems is a National Department of Health priority. Historically, real time tracking of case trends and reporting within 24 h—a requirement in South Africa’s National surveillance guidelines—has not been possible. To enhance surveillance and response efficiency, a mobile surveillance tool, MalariaConnect, was developed using Unstructured Supplementary Service Data (USSD) technology. It was rolled out in health facilities in malaria endemic areas of South Africa to provide 24-h reporting of malaria cases. Methods To evaluate the efficiency of the mobile tool to detect an outbreak data were extracted from the paper based and MalariaConnect reporting systems in Bushbuckridge from 1 January to 18 June 2017. These data were subject to time series analyses to determine if MalariaConnect provided sufficient data reliably to detect increasing case trends reported through the paper system. The Chi squared test was used to determine goodness of fit between the following indicator data generated using MalariaConnect and paper reporting systems: timeliness, completeness, and precision. Results MalariaConnect adequately tracked case trends reported through the paper system. Timeliness of reporting increased significantly using MalariaConnect with 0.63 days to notification compared to 5.65 days using the paper-system (p < 0.05). The completeness of reporting was significantly higher for the paper system (100% completion; p < 0.05), compared to confirmed MalariaConnect cases (61%). There was a moderate association between data precision and the reporting system (p < 0.05). MalariaConnect provided an effective way of reliably and accurately identifying the onset of the malaria outbreak in Bushbuckridge. Conclusion Timeliness significantly improved using MalariaConnect and in a malaria elimination setting, can be used to markedly improve case investigation and response activities within the recommended 72-h period. Although data completeness and precision were lower compared to paper reporting, MalariaConnect data can be used to trigger outbreak responses.
Background: KwaZulu-Natal, one of South Africa’s three malaria endemic provinces, is nearing malaria elimination, reporting fewer than 100 locally-acquired cases annually since 2010. Despite sustained implementation of essential interventions, including annual indoor residual spraying, prompt case detection using malaria rapid diagnostics tests and treatment with effective artemisinin-based combination therapy, low-level focal transmission persists in the province. This malaria prevalence and entomological survey was therefore undertaken to identify the drivers of this residual transmission. Methods: Malaria prevalence as well as malaria knowledge, attitudes and practices among community members and mobile migrant populations within uMkhanyakude district, KwaZulu-Natal were assessed during a community-based malaria prevalence survey. All consenting participants were tested for malaria by both conventional and highly-sensitive falciparum-specific rapid diagnostic tests. Finger-prick filter-paper blood spots were also collected from all participants for downstream parasite genotyping analysis. Entomological investigations were conducted around the surveyed households, with potential breeding sites geolocated and larvae collected for species identification and insecticide susceptibility testing. A random selection of households were assessed for indoor residual spray quality by cone bioassay. Results: A low malaria incidence was confirmed in the study area, with only 2% (67/2979) of the participants found to be malaria positive by both conventional and highly-sensitive falciparum-specific rapid diagnostic tests. Malaria incidence however differed markedly between the border market and community (p < 0001), with the majority of the detected malaria carriers (65/67) identified as asymptomatic Mozambican nationals transiting through the informal border market from Mozambique to economic hubs within South Africa. Genomic analysis of the malaria isolates revealed a high degree of heterozygosity and limited genetic relatedness between the isolates supporting the hypothesis of limited local malaria transmission within the province. New potential vector breeding sites, potential vector populations with reduced insecticide susceptibility and areas with sub-optimal vector intervention coverage were identified during the entomological investigation. Conclusion: If KwaZulu-Natal is to successfully halt local malaria transmission and prevent the re-introduction of malaria, greater efforts needs to be placed on detecting and treating malaria carriers at both formal and informal border crossings with transmission blocking antimalarials, while ensuring optimal coverage of vector control interventions is achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.