IntroductionProtective immunity against pathogens relies on the production of high-affinity antibodies by long-lived plasma cells (PCs). Moreover, the ability to respond faster and with more potent antibodies to subsequent encounters with the same infectious agent depends on the generation of long-lived memory B cells. Both, high-affinity memory B cells and PCs differentiate from antigenspecific B cells that are recruited into the GC reaction during T cell-dependent immune responses (1). In GCs, B cells undergo clonal expansion, a process during which they accumulate mutations at high frequency within the Ig heavy and light chain variable (V) region genes. The highly dynamic nature of the GC reaction is characterized by repeated cycles of cell division, Ig somatic mutation, and strict selection based on the ability of B cells to capture and present antigen to T follicular helper cells (2). These processes occur within distinct areas of the GC reached by B cells through migratory paths regulated by chemokine gradients (1). The molecular determinants enabling cyclic reentry of B cells into the proliferating and mutating compartment of centroblasts, preventing terminal differentiation and the ensuing exit from the GC, remain poorly characterized.
Plasmablasts generated in germinal centers (GC) emerge at the GC–T zone interface (GTI). Zhang et al. demonstrate two major regulators of this process: Tfh-derived IL-21 and APRIL produced by CD157high fibroblastic reticular cells located in the GTI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.