Abstract. We extend the Description Logic ALC with a "typicality" operator T that allows us to reason about the prototypical properties and inheritance with exceptions. The resulting logic is called ALC + T. The typicality operator is intended to select the "most normal" or "most typical" instances of a concept. In our framework, knowledge bases may then contain, in addition to ordinary ABoxes and TBoxes, subsumption relations of the form "T(C) is subsumed by P ", expressing that typical C-members have the property P . The semantics of a typicality operator is defined by a set of postulates that are strongly related to KrausLehmann-Magidor axioms of preferential logic P. We first show that T enjoys a simple semantics provided by ordinary structures equipped by a preference relation. This allows us to obtain a modal interpretation of the typicality operator. Using such a modal interpretation, we present a tableau calculus for deciding satisfiability of ALC + T knowledge bases. Our calculus gives a nondeterministic-exponential time decision procedure for satisfiability of ALC + T. We then extend ALC + T knowledge bases by a nonmonotonic completion that allows inferring defeasible properties of specific concept instances 1 .
We extend the Description Logic ALC with a "typicality" operator T that allows us to reason about the prototypical properties and inheritance with exceptions. The resulting logic is called ALC + T. The typicality operator is intended to select the "most normal" or "most typical" instances of a concept. In our framework, knowledge bases may then contain, in addition to ordinary ABoxes and TBoxes, subsumption relations of the form "T(C) is subsumed by P ", expressing that typical C-members have the property P . The semantics of a typicality operator is defined by a set of postulates that are strongly related to Kraus-Lehmann-Magidor axioms of preferential logic P. We first show that T enjoys a simple semantics provided by ordinary structures equipped with a preference relation. This allows us to obtain a modal interpretation of the typicality operator. We show that the satisfiability of an ALC+T knowledge base is decidable and it is precisely EXPTIME. We then present a tableau calculus for deciding satisfiability of ALC + T knowledge bases. Our calculus gives a (suboptimal) nondeterministic-exponential time decision procedure for ALC + T. We finally discuss how to extend ALC + T in order to infer defeasible properties of (explicit or implicit) individuals. We propose two alternatives: (i) a nonmonotonic completion of a knowledge base; (ii) a "minimal model" semantics for ALC + T whose intuition is that minimal models are those that maximise typical instances of concepts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.