Potentially dangerous stimuli are important contenders for the capture of visual-spatial attention, and it has been suggested that an evolved fear module is preferentially activated by stimuli that are fear relevant in a phylogenetic sense (e.g., snakes, spiders, angry faces). In this study, a visual search task was used to test this hypothesis by directly contrasting phylogenetically (snakes) and ontogenetically (guns) fear-relevant stimuli. Results showed that the modern threat was detected as efficiently as the more ancient threat. Thus, both guns and snakes attracted attention more effectively than neutral stimuli (flowers, mushrooms, and toasters). These results support a threat superiority effect but not one that is preferentially accessed by threat-related stimuli of phylogenetic origin. The results are consistent with the view that faster detection of threat in visual search tasks may be more accurately characterized as relevance superiority effects rather than as threat superiority effects. Keywordsfear; threat detection; basic emotions; visual search; appraisalThe detection of threat-relevant stimuli is controlled by a complex network of neural structures that allow for the rapid perception of potential danger and support a variety of coping strategies such as fighting, freezing, or rapid escape (e.g., Armony & LeDoux, 2000;Calder, Lawrence, & Young, 2001;LeDoux, 1996). The amygdala is a crucial structure within this network and plays an important role in coordinating responses to threatening stimuli (Aggleton, 2000). One theoretical view is that the amygdala operates primarily as a rapid-response "fear module" in the brain that enables both the perception of fear in others and the experience of fear within the individual. Such an evolved fear module is assumed to have been shaped and constrained by evolutionary contingencies so that it is preferentially activated within aversive contexts by stimuli that are relevant in a phylogenetic sense (Öhman, 1993;Öhman & Mineka, 2001). This perspective is compatible with discrete emotions theories (e.g., Ekman, 1984;Tomkins, 1962), in which emotions are considered to be specific response patterns that are elicited most strongly by prototypical eliciting stimuli. Thus, biologically relevant stimuli related to threat would preferentially activate such a system with relatively little computational processing required (LeDoux, 1996). If this view is correct, the fear module should be activated more effectively by phylogenetic threats that are common to all mammals, such as snakes and reptiles.Copyright 2007 by the American Psychological Association Correspondence concerning this article should be addressed to Elaine Fox, Department of Psychology, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ United Kingdom. efox@essex.ac.uk. Several strands of evidence support this view. Specific phobias, for example, are more likely to develop in reaction to situations that posed a threat to the survival of our ancestors, (e.g., predators and heights) than to pote...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.