Disinfection by low-pressure monochromatic ultraviolet (UVC) radiation (253.7 nm) became an important technique to sanitize drinking water and also wastewater in tertiary treatments. In order to prevent the transmission of waterborne viral diseases, the analysis of the disinfection kinetics and the quantification of infectious viral pathogens and indicators are highly relevant and need to be addressed. The families Adenoviridae and Polyomaviridae comprise human and animal pathogenic viruses that have been also proposed as indicators of fecal contamination in water and as Microbial Source Tracking tools. While it has been previously suggested that dsDNA viruses may be highly resistant to UVC radiation compared to other viruses or bacteria, no information is available on the stability of polyomavirus toward UV irradiation. Here, the inactivation of dsDNA (HAdV2 and JCPyV) and ssRNA (MS2 bacteriophage) viruses was analyzed at increasing UVC fluences. A minor decay of 2-logs was achieved for both infectious JC polyomaviruses (JCPyV) and human adenoviruses 2 (HAdV2) exposed to a UVC fluence of 1,400 J/m(2), while a decay of 4-log was observed for MS2 bacteriophages (ssRNA). The present study reveals the high UVC resistance of dsDNA viruses, and the UV fluences needed to efficiently inactivate JCPyV and HAdV2 are predicted. Furthermore, we show that in conjunction with appropriate mathematical models, qPCR data may be used to accurately estimate virus infectivity.
This study involved collaboration between three centres with expertise in viruses, bacteria and protozoa. The focus of the research was the study of the dissemination and removal of pathogens and faecal indicators in two sewage treatment plants (STP1 and STP2) using tertiary treatments. Samples were collected over a period of five months through the sewage treatment processes. Analysis of the samples revealed that the plants were not efficient at removing the faecal indicators and pathogens tested during the study. From entry point (raw sewage) to effluent level (tertiary treatment effluent water), the experimental results showed that the reduction ratios of human adenoviruses were 1.2 log₁₀ in STP1 and 1.9 log₁₀ in STP2. Whereas for Giardia spp. and Cryptosporidium spp. the reduction ratios were 2.3 log₁₀ for both pathogens in STP1, and 3.0 and 1.7 log₁₀ in STP2, respectively. Furthermore, the presence of faecal indicators and pathogens at different sampling points was evaluated revealing that the tested pathogens were present in reclaimed water. Human adenovirus and Arcobacter spp. showed positive results in infectivity assays for most of the tertiary effluent water samples that comply with current legislation in Spain. The pathogens detected must be evaluated using a risk assessment model, which will be essential for the development of improved guidelines for the re-use of reclaimed water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.