The kil loci (kilA, kilB, kilC, and kilE) of incompatibility group P (IncP), broad-host-range plasmid RK2 were originally detected by their potential lethality to Escherichia coli host cells. Expression of the kil determinants is controlled by different combinations of kor functions (korA, korB, korC, and korE). This system of regulated genes, known as the kil-kor regulon, includes trfA, which encodes the RK2 replication initiator. The functions of the kil loci are unknown, but their coregulation with an essential replication function suggests that they have a role in the maintenance or host range of RK2. In this study, we have determined the nucleotide sequence of a 3-kb segment of RK2 that encodes the entire kilA locus. The region encodes three genes, designated klaA, klaB, and klaC. The phage T7 RNA polymerase-dependent expression system was used to identify three polypeptide products. The estimated masses of klaA and klaB products were in reasonable agreement with the calculated molecular masses of 28,407 and 42,156 Da, respectively. The klaC product is calculated to be 32,380 Da, but the observed polypeptide exhibited an apparent mass of 28 kDa on sodium dodecyl sulfatepolyacrylamide gels. Mutants of klaC were used to confirm that initiation of translation of the observed product occurs at the first ATG in the klaC open reading frame. Hydrophobicity analysis indicated that the KlaA and KlaB polypeptides are likely to be soluble, whereas the KlaC polypeptide was predicted to have four potential membrane-spanning domains. The only recognizable promoter sequences in the kilA region were those of the kilA promoter located upstream of klaA and the promoter for the korA-korB operon located just downstream of a rho-independent terminatorlike sequence following klaC. The transcriptional start sites for these promoters were determined by primer extension. Using isogenic sets of plasmids with nonpolar mutations, we found that klaA, klaB, and klaC are each able to express a host-lethal (Kil') phenotype in the absence of kor functions. Inactivation of the kilA promoter causes loss of the lethal phenotype, demonstrating that all three genes are expressed from the kilA promoter as a multicistronic operon. We investigated two other phenotypes that have been mapped to the kilA region of RK2 or the closely related IncP plasmids RP1 and RP4: inhibition of conjugal transfer of IncW plasmids (fiwB) and resistance to potassium tellurite. The cloned kilA operon was found to express both phenotypes, even in the presence of korA and korB, whose functions are known to regulate the kilA promoter. In addition, mutant and complementation analyses showed that the kilA promoter and the products of all three kla genes are necessary for expression of both phenotypes. Therefore, host lethality, fertility inhibition, and tellurite resistance are all properties of the kilA operon. We discuss the possible role of the kilA operon for RK2.Bacterial plasmids of incompatibility group P (IncP) are distinguished by their extraordinary host range (1...
The entry of Yersinia pseudotuberculosis into cultured mammalian cells is mediated by the bacterial protein invasin. The mammalian receptors for invasin are five  1 chain integrins. Site-directed mutagenesis of the aspartate and lysine residues in the 192-amino acid integrin binding domain of invasin was performed to identify regions, in addition to the previously characterized 903-913 region, that are important for integrin binding. One mutation, D811A, resulted in depressed ability of invasin to bind purified ␣ 5  1 and to promote bacterial entry. Further mutational analysis of Asp-811 indicated that an oxygen-containing side chain is required at this position. A second nearby residue, Phe-808, was also shown to be important for integrin binding, as an alanine substitution at this site had properties similar to the Asp-811 mutation. This mutational analysis has therefore identified a second region that, in conjunction with residues 903-913, is required for wild type levels of integrin binding. The contribution to binding by two noncontiguous sites in the primary sequence parallels results that indicate two domains of fibronectin are involved in integrin binding.
Oral administration of ajulemic acid (AjA), a cannabinoid acid devoid of psychoactivity, prevents joint tissue injury in rats with adjuvant induced arthritis. Because activation of osteoclasts is central to the pathogenesis of bone erosion in patients with rheumatoid arthritis (RA), we investigated the influence of AjA on osteoclast differentiation and survival. Osteoclast cultures were established by stimulation of RAW264.7 cells and primary mouse bone marrow cultures with receptor activator of NF-kappaB ligand (RANKL). Simultaneous addition of AjA (15 and 30 microM) and RANKL to both culture systems significantly suppressed development of multinucleated osteoclasts (osteoclastogenesis) in a dose dependent manner, as determined by quantification of multinuclear, tartrate-resistant acid phosphatase (TRAP)-positive cells. AjA impaired growth of RAW264.7 monocytes and prevented further osteoclast formation in cultures in which osteoclastogenesis had already begun. Reduction by AjA of both monocyte growth and osteoclast formation was associated with apoptosis, assayed by annexin V and propidium iodide staining, and caspase activity. The anti-osteoclastogenic effects of AjA did not require the continuous presence of AjA in the cell cultures. Based on these findings, we propose that AjA or other nonpsychoactive synthetic analogs of Cannabis constituents may be useful therapy for diseases such as RA and osteoporosis in which bone resorption is a central feature.
The osteoclast is a highly polarized multinucleated cell that resorbs bone. Using high resolution immunofluorescence microscopy, we demonstrated that all nuclei of an osteoclast are transcriptionally active. Each nucleus within the osteoclast contains punctately organized microenvironments where regulatory complexes that support transcriptional and post-transcriptional control reside. Functional equivalency of osteoclast nuclei is reflected by similar representation of regulatory proteins that support ribosomal RNA synthesis (nucleolin), mRNA transcription (RNA polymerase II, bromouridine triphosphate), processing of gene transcripts (SC35), signal transduction (NF-kappaB), and phenotypic gene expression (Runx1). Our results establish that gene regulatory machinery is architecturally associated and compartmentalized within intranuclear microenvironments of the multiple nuclei of osteoclasts to support physiologically responsive modifications in cellular structural and functional properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.