The NOAA/NASA Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) experiment was a multi-agency, inter-disciplinary research effort to: (a) obtain detailed measurements of trace gas and aerosol emissions from wildfires and prescribed fires using aircraft, satellites and ground-based instruments, (b) make extensive suborbital remote sensing measurements of fire dynamics, (c) assess local, regional, and global modeling of fires, and (d) strengthen connections to observables on the ground such as fuels and fuel consumption and satellite products such as burned area and fire radiative power. From Boise, ID western wildfires were studied with the NASA DC-8 and two NOAA Twin Otter aircraft. The high-altitude NASA ER-2 was deployed from Palmdale, CA to observe some of these fires in conjunction with satellite overpasses and the other aircraft. Further research was conducted on three mobile laboratories and ground sites, and 17 different modeling forecast and analyses products for fire, fuels and air quality and climate implications. From Salina, KS the DC-8 investigated 87 smaller fires in the Southeast with remote and in-situ data collection. Sampling by all platforms was designed to measure emissions of trace gases and aerosols with multiple transects to capture the chemical transformation of these emissions and perform remote sensing observations of fire and smoke plumes under day and night conditions. The emissions were linked to fuels WARNEKE ET AL.
The 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) field experiment obtained a diverse set of in-situ and remotely-sensed measurements before and during a pyrocumulonimbus (pyroCb) event over the Williams Flats fire in Washington State. This unique dataset confirms that pyroCb activity is an efficient vertical smoke transport pathway into the upper troposphere and lower stratosphere (UTLS). The magnitude of smoke plumes observed in the UTLS has increased significantly in recent years, following unprecedented wildfire and pyroCb activity observed worldwide. The FIREX-AQ pyroCb dataset is therefore extremely relevant to a broad community, providing the first measurements of fresh smoke exhaust in the upper-troposphere, including from within active pyroCb cloud tops. High-resolution remote sensing reveals that three plume cores linked to localized fire fronts, burning primarily in dense forest fuels, contributed to four total pyroCb “pulses”. Rapid changes in fire geometry and spatial extent dramatically influenced the magnitude, behavior, and duration of pyroCb activity. Cloud probe measurements and weather radar identify the presence of large ice particles within the pyroCb and hydrometers below cloud base, indicating precipitation development. The resulting feedbacks suggest that vertical smoke transport efficiency was reduced slightly when compared with intense pyroCb events reaching the lower stratosphere. Physical and optical aerosol property measurements in pyroCb exhaust are compared with previous assumptions. A large suite of aerosol and gas-phase chemistry measurements sets a foundation for future studies aimed at understanding the composition of smoke plumes lifted by pyroconvection into the UTLS and their role in the climate system.
Injections of wildfire smoke plumes into the free troposphere impact air quality, yet model forecasts of injections are poor. Here, we use aircraft observations obtained during the 2019 western US wildfires (FIREX-AQ) to evaluate a commonly used smoke plume rise parameterization in two atmospheric chemistry-transport models (WRF-Chem and HRRR-Smoke). Observations show that smoke injections into the free troposphere occur in 35% of plumes, whereas the models forecast 59–95% indicating false injections in the simulations. False injections were associated with both models overestimating fire heat flux and terrain height, and with WRF-Chem underestimating planetary boundary layer height. We estimate that the radiant fraction of heat flux is 0.5 to 25 times larger in models than in observations, depending on fuel type. Model performance was substantially improved by using observed heat flux and boundary layer heights, confirming that models need accurate heat fluxes and boundary layer heights to correctly forecast plume injections.
Aerosol mass extinction efficiency (MEE) is a key aerosol property used to connect aerosol optical properties with aerosol mass concentrations. Using measurements of smoke obtained during the Fire Influence on Regional to Global Environments and Air Quality (FIREX‐AQ) campaign we find that mid‐visible smoke MEE can change by a factor of 2–3 between fresh smoke (<2 hr old) and one‐day‐old smoke. While increases in aerosol size partially explain this trend, changes in the real part of the aerosol refractive index (real(n)) are necessary to provide closure assuming Mie theory. Real(n) estimates derived from multiple days of FIREX‐AQ measurements increase with age (from 1.40 – 1.45 to 1.5–1.54 from fresh to one‐day‐old) and are found to be positively correlated with organic aerosol oxidation state and aerosol size, and negatively correlated with smoke volatility. Future laboratory, field, and modeling studies should focus on better understanding and parameterizing these relationships to fully represent smoke aging.
Background. Accurately estimating burned area from satellites is key to improving biomass burning emission models, studying fire evolution and assessing environmental impacts. Previous studies have found that current methods for estimating burned area of fires from satellite active-fire data do not always provide an accurate estimate. Aims and methods. In this work, we develop a novel algorithm to estimate hourly accumulated burned area based on the area from boundaries of non-convex polygons containing the accumulated Visible Infrared Imaging Radiometer Suite (VIIRS) active-fire detections. Hourly time series are created by combining VIIRS estimates with Fire Radiative Power (FRP) estimates from GOES-17 (Geostationary Operational Environmental Satellite) data. Conclusions, key results and implication. We evaluate the performance of the algorithm for both accumulated and change in burned area between airborne observations, and specifically examine sensitivity to the choice of the parameter controlling how much the boundary can shrink towards the interior of the area polygon. Results of the hourly accumulation of burned area for multiple fires from 2019 to 2020 generally correlate strongly with airborne infrared (IR) observations collected by the United States Forest Service National Infrared Operations (NIROPS), exhibiting correlation coefficient values usually greater than 0.95 and errors <20%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.