MicroRNAs (miRNAs) have emerged as potential cancer therapeutics; however, their clinical use is hindered by lack of effective delivery mechanisms to tumor sites. Mesenchymal stem cells (MSCs) have been shown to migrate to experimental glioma and to exert anti-tumor effects by delivering cytotoxic compounds. Here, we examined the ability of MSCs derived from bone marrow, adipose tissue, placenta and umbilical cord to deliver synthetic miRNA mimics to glioma cells and glioma stem cells (GSCs). We examined the delivery of miR-124 and miR-145 mimics as glioma cells and GSCs express very low levels of these miRNAs. Using fluorescently labeled miRNA mimics and in situ hybridization, we demonstrated that all the MSCs examined delivered miR-124 and miR-145 mimics to co-cultured glioma cells and GSCs via gap junction–dependent and independent processes. The delivered miR-124 and miR-145 mimics significantly decreased the luciferase activity of their respected reporter target genes, SCP-1 and Sox2, and decreased the migration of glioma cells and the self-renewal of GSCs. Moreover, MSCs delivered Cy3-miR-124 mimic to glioma xenografts when administered intracranially. These results suggest that MSCs can deliver synthetic exogenous miRNA mimics to glioma cells and GSCs and may provide an efficient route of therapeutic miRNA delivery in vivo.
Molecular processes that could contribute to di erences in chemo-and radioresistance include variations in DNA repair mechanisms. In mammalian cells, the product of the rad51 gene mediates DNA repair via homologous recombination. We describe that in contrast to conventional monolayer cell systems Rad51 protein accumulates to high-levels in three-dimensional cell culture models as well as in orthotopic xeno-transplants of human pancreatic cancer cells. Strikingly, over-expression of wild-type Rad51 was also found in 66% of human pancreatic adenocarcinoma tissue specimens. Functional analysis revealed that Rad51 over-expression enhances survival of cells after induction of DNA double strand breaks. These data suggest that perturbations of Rad51 expression contribute to the malignant phenotype of pancreatic cancer.
The high-mobility group-box transcription factor sex-determining region Y-box 2 (Sox2) is essential for the maintenance of stem cells from early development to adult tissues. Sox2 can reprogram differentiated cells into pluripotent cells in concert with other factors and is overexpressed in various cancers. In glioblastoma (GBM), Sox2 is a marker of cancer stemlike cells (CSCs) in neurosphere cultures and is associated with the proneural molecular subtype. Here, we report that Sox2 expression pattern in GBM tumors and patient-derived mouse xenografts is not restricted to a small percentage of cells and is coexpressed with various lineage markers, suggesting that its expression extends beyond CSCs to encompass more differentiated neoplastic cells across molecular subtypes. Employing a CSC derived from a patient with GBM and isogenic differentiated cell model, we show that Sox2 knockdown in the differentiated state abolished dedifferentiation and acquisition of CSC phenotype. Furthermore, Sox2 deficiency specifically impaired the astrocytic component of a biphasic gliosarcoma xenograft model while allowing the formation of tumors with sarcomatous phenotype. The expression of genes associated with stem cells and malignancy were commonly downregulated in both CSCs and serum-differentiated cells on Sox2 knockdown. Genes previously shown to be associated with pluripontency and CSCs were only affected in the CSC state, whereas embryonic stem cell self-renewal genes and cytokine signaling were downregulated, and the Wnt pathway activated in differentiated Sox2-deficient cells. Our results indicate that Sox2 regulates the expression of key genes and pathways involved in GBM malignancy, in both cancer stemlike and differentiated cells, and maintains plasticity for bidirectional conversion between the two states, with significant clinical implications.
Glioblastomas, the most common and aggressive form of astrocytoma, are refractory to therapy, and molecularly heterogeneous. The ability to establish cell cultures that preserve the genomic profile of the parental tumors, for use in patient specific in vitro and in vivo models, has the potential to revolutionize the preclinical development of new treatments for glioblastoma tailored to the molecular characteristics of each tumor.Starting with fresh high grade astrocytoma tumors dissociated into single cells, we use the neurosphere assay as an enrichment method for cells presenting cancer stem cell phenotype, including expression of neural stem cell markers, long term self-renewal in vitro, and the ability to form orthotopic xenograft tumors. This method has been previously proposed, and is now in use by several investigators. Based on our experience of dissociating and culturing 125 glioblastoma specimens, we arrived at the detailed protocol we present here, suitable for routine neurosphere culturing of high grade astrocytomas and large scale expansion of tumorigenic cells for preclinical studies. We report on the efficiency of successful long term cultures using this protocol and suggest affordable alternatives for culturing dissociated glioblastoma cells that fail to grow as neurospheres. We also describe in detail a protocol for preserving the neurospheres 3D architecture for immunohistochemistry. Cell cultures enriched in CSCs, capable of generating orthotopic xenograft models that preserve the molecular signatures and heterogeneity of GBMs, are becoming increasingly popular for the study of the biology of GBMs and for the improved design of preclinical testing of potential therapies.
The treatment of patients with anaplastic oligodendroglioma (AO) has been significantly impacted by the molecular detection of loss of sequences on chromosomes 1p and 19q. We performed a clinical trial to prospectively evaluate the safety of treating patients with AO with temozolomide (TMZ) alone in patients with chromosome 1p/19q loss and with chemo-radiation in patients not harboring this loss. Forty-eight patients were enrolled, 36/48 (75%) with evidence of chromosome 1p/19q loss treated with TMZ alone and 12/18 (25%) without such losses, treated with pre-radiation TMZ followed by chemo-radiation. Despite more aggressive treatment, patients without 1p/19q loss had a shorter progression-free survival (PFS) of 13.5 months. With a median follow-up time of 32 months, patients with 1p/19q LOH had a median TTP of 28.7 months. Patients with AO with 1p/19q LOH can be safely treated with single-agent TMZ and do not appear to experience earlier or more frequent tumor progression. This treatment regimen should be studied as part of a formal randomized clinical trial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.