Although molybdenum alkylidyne complexes such as 1 endowed with triarylsilanolate ligands are excellent catalysts for alkyne metathesis, they can encounter limitations when (multiple) protic sites are present in a given substrate and/or when forcing conditions are necessary. In such cases, a catalyst formed in situ upon mixing of the trisamidomolybenum alkylidyne complex 3 and the readily available trisilanol derivatives 8 or 11 shows significantly better performance. This two-component system worked well for a series of model compounds comprising primary, secondary or phenolic -OH groups, as well as for a set of challenging (bis)propargylic substrates. Its remarkable efficiency is also evident from applications to the total syntheses of manshurolide, a highly strained sesquiterpene lactone with kinase inhibitory activity, and the structurally demanding immunosuppressive cyclodiyne ivorenolide A; in either case, the standard catalyst 1 largely failed to effect the critical macrocyclization, whereas the two-component system was fully operative. A study directed toward the quinolizidine alkaloid lythrancepine I features yet another instructive example, in that a triyne substrate was metathesized with the help of 3/11 such that two of the triple bonds participated in ring closure, while the third one passed uncompromised. As a spin-off of this project, a much improved ruthenium catalyst for the redox isomerization of propargyl alcohols to the corresponding enones was developed
Oral mucositis occurs in up to 75% of recipients of high-dose chemoradiotherapy conditioning regimens used for allogeneic hematopoietic stem cell transplantation (HSCT). As a result of mucositis, narcotic analgesia and total parenteral nutrition (TPN) are commonly required after HSCT. Methotrexate, an antiproliferative graft-versus-host disease (GVHD) prophylaxis agent, impairs mucosal regeneration and worsens and prolongs mucositis. We assessed the effect of substituting sirolimus for methotrexate as GVHD prophylaxis on outcomes associated with mucositis. Two patient cohorts undergoing allogeneic HLA-matched related donor peripheral blood stem cell transplantation with cyclophosphamide/total body irradiation conditioning were prospectively analyzed for mucositis severity and retrospectively reviewed for correlative outcomes. GVHD prophylaxis consisted of sirolimus/tacrolimus (ST) in the study group and tacrolimus/methotrexate (TM) in the control group. Thirty patients received ST and 24 patients received TM as GVHD prophylaxis between October 2000 and May 2003. Mild, moderate, and severe mucositis was noted in 37%, 57%, and 7% of the ST group and 8%, 42%, and 50% of the TM group (P = .0002). Less TPN was used in the ST group than the TM group (17% versus 43% of posttransplantation hospital days; P = .02). The total number of narcotic days was lower in the ST group in comparison with the TM group (median, 13.5 versus 17 days; P = .08). The time to first hospital discharge was shorter in the ST group compared with the TM group (median, 18 versus 22 days; P = .07). The substitution of sirolimus for methotrexate as GVHD prophylaxis is associated with a reduction in mucositis severity. As a result, TPN and narcotic use are reduced, and hospitalization duration is shortened. Less toxic GVHD prophylaxis regimens without methotrexate may have a significant effect on patient quality of life, patient outcomes, and economic outcomes associated with allogeneic stem cell transplantation.
In an attempt to study the ability of the latest generation of alkyne metathesis catalysts to process sterically hindered substrates, two different routes to the bacterial metabolite kendomycin (1) were explored. Whereas the cyclization of the overcrowded arylalkyne 39 and related substrates turned out to be impractical or even impossible, ring closure of the slightly relaxed diyne 45 was achieved in excellent yield under notably mild conditions with the aid of the molybdenum alkylidyne 2 endowed with triphenylsilanolate ligands. The resulting cycloalkyne 46 was engaged into a gold-catalyzed hydroalkoxylation, which led to benzofuran 47 that had already previously served as a late-stage intermediate en route to 1
A concise approach to the algal metabolite 1 is described, which also determines the previously unknown stereostructure of this natural product. Compound 1 is distinguished by a rare brominated 4-pyrone nucleus linked as a ketene–acetal to a polyunsaturated macrocyclic scaffold comprising an extra homoallylic bromide entity. The synthesis of 1 is based on the elaboration and selective functionalization of the linear precursor 23 endowed with no less than six different sites of unsaturation including the highly enolized oxo-alkanoate function. Key to success was the formation of the 2-alkoxy-4-pyrone ring by a novel gold-catalyzed transformation which engages only the acetylenic β-ketoester substructure of 23 but leaves all other π-bonds untouched. The synthesis was completed by a ring-closing alkyne metathesis to forge the signature cycloalkyne motif of 1 followed by selective bromination of the ketene–acetal site in the resulting product 27 without touching the skipped diene–yne substructure resident within the macrocyclic tether
β,β-Dibromoenamides show two different interesting reactivities based on the choice of R group under the reaction conditions. On the basis of mechanistic studies, both reactions proceed via an intermolecular Suzuki-Miyaura C-C coupling and an intramolecular C-O coupling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.