A simple model for online forecasting of ammonium (NH4+) concentrations in sewer systems is proposed. The forecast model utilizes a simple representation of daily NH4+ profiles and the dilution approach combined with information from online NH4+ and flow sensors. The method utilizes an ensemble approach based on past observations to create model prediction bounds. The forecast model was tested against observations collected at the inlet of two wastewater treatment plants (WWTPs) over an 11-month period. NH4+ data were collected with ion-selective sensors. The model performance evaluation focused on applications in relation to online control strategies. The results of the monitoring campaigns highlighted a high variability in daily NH4+ profiles, stressing the importance of an uncertainty-based modelling approach. The maintenance of the NH4+ sensors resulted in important variations of the sensor signal, affecting the evaluation of the model structure and its performance. The forecast model succeeded in providing outputs that potentially can be used for integrated control of wastewater systems. This study provides insights on full scale application of online water quality forecasting models in sewer systems. It also highlights several research gaps which – if further investigated – can lead to better forecasts and more effective real-time operations of sewer and WWTP systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.