Background Periprosthetic joint infection (PJI) is a severe complication from the patient's perspective and an expensive one in a value-driven healthcare model. Risk stratification can help identify those patients who may have risk factors for complications that can be mitigated in advance of elective surgery. Although numerous surgical risk calculators have been created, their accuracy in predicting outcomes, specifically PJI, has not been tested.
ImportanceThe incidence of arterial thromboembolism and venous thromboembolism in persons with COVID-19 remains unclear.ObjectiveTo measure the 90-day risk of arterial thromboembolism and venous thromboembolism in patients hospitalized with COVID-19 before or during COVID-19 vaccine availability vs patients hospitalized with influenza.Design, Setting, and ParticipantsRetrospective cohort study of 41 443 patients hospitalized with COVID-19 before vaccine availability (April-November 2020), 44 194 patients hospitalized with COVID-19 during vaccine availability (December 2020-May 2021), and 8269 patients hospitalized with influenza (October 2018-April 2019) in the US Food and Drug Administration Sentinel System (data from 2 national health insurers and 4 regional integrated health systems).ExposuresCOVID-19 or influenza (identified by hospital diagnosis or nucleic acid test).Main Outcomes and MeasuresHospital diagnosis of arterial thromboembolism (acute myocardial infarction or ischemic stroke) and venous thromboembolism (deep vein thrombosis or pulmonary embolism) within 90 days. Outcomes were ascertained through July 2019 for patients with influenza and through August 2021 for patients with COVID-19. Propensity scores with fine stratification were developed to account for differences between the influenza and COVID-19 cohorts. Weighted Cox regression was used to estimate the adjusted hazard ratios (HRs) for outcomes during each COVID-19 vaccine availability period vs the influenza period.ResultsA total of 85 637 patients with COVID-19 (mean age, 72 [SD, 13.0] years; 50.5% were male) and 8269 with influenza (mean age, 72 [SD, 13.3] years; 45.0% were male) were included. The 90-day absolute risk of arterial thromboembolism was 14.4% (95% CI, 13.6%-15.2%) in patients with influenza vs 15.8% (95% CI, 15.5%-16.2%) in patients with COVID-19 before vaccine availability (risk difference, 1.4% [95% CI, 1.0%-2.3%]) and 16.3% (95% CI, 16.0%-16.6%) in patients with COVID-19 during vaccine availability (risk difference, 1.9% [95% CI, 1.1%-2.7%]). Compared with patients with influenza, the risk of arterial thromboembolism was not significantly higher among patients with COVID-19 before vaccine availability (adjusted HR, 1.04 [95% CI, 0.97-1.11]) or during vaccine availability (adjusted HR, 1.07 [95% CI, 1.00-1.14]). The 90-day absolute risk of venous thromboembolism was 5.3% (95% CI, 4.9%-5.8%) in patients with influenza vs 9.5% (95% CI, 9.2%-9.7%) in patients with COVID-19 before vaccine availability (risk difference, 4.1% [95% CI, 3.6%-4.7%]) and 10.9% (95% CI, 10.6%-11.1%) in patients with COVID-19 during vaccine availability (risk difference, 5.5% [95% CI, 5.0%-6.1%]). Compared with patients with influenza, the risk of venous thromboembolism was significantly higher among patients with COVID-19 before vaccine availability (adjusted HR, 1.60 [95% CI, 1.43-1.79]) and during vaccine availability (adjusted HR, 1.89 [95% CI, 1.68-2.12]).Conclusions and RelevanceBased on data from a US public health surveillance system, hospitalization with COVID-19 before and during vaccine availability, vs hospitalization with influenza in 2018-2019, was significantly associated with a higher risk of venous thromboembolism within 90 days, but there was no significant difference in the risk of arterial thromboembolism within 90 days.
Purpose Health plan claims may provide complete longitudinal data for timely, real‐world population‐level COVID‐19 assessment. However, these data often lack laboratory results, the standard for COVID‐19 diagnosis. Methods We assessed the validity of ICD‐10‐CM diagnosis codes for identifying patients hospitalized with COVID‐19 in U.S. claims databases, compared to linked laboratory results, among six Food and Drug Administration Sentinel System data partners (two large national insurers, four integrated delivery systems) from February 20–October 17, 2020. We identified patients hospitalized with COVID‐19 according to five ICD‐10‐CM diagnosis code‐based algorithms, which included combinations of codes U07.1, B97.29, general coronavirus codes, and diagnosis codes for severe symptoms. We calculated the positive predictive value (PPV) and sensitivity of each algorithm relative to laboratory test results. We stratified results by data source type and across three time periods: February 20–March 31 (Time A), April 1–30 (Time B), May 1–October 17 (Time C). Results The five algorithms identified between 34 806 and 47 293 patients across the study periods; 23% with known laboratory results contributed to PPV calculations. PPVs were high and similar across algorithms. PPV of U07.1 alone was stable around 93% for integrated delivery systems, but declined over time from 93% to 70% among national insurers. Overall PPV of U07.1 across all data partners was 94.1% (95% CI, 92.3%–95.5%) in Time A and 81.2% (95% CI, 80.1%–82.2%) in Time C. Sensitivity was consistent across algorithms and over time, at 94.9% (95% CI, 94.2%–95.5%). Conclusion Our results support the use of code U07.1 to identify hospitalized COVID‐19 patients in U.S. claims data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.