Engineered nano–bio cellular interfaces driven by vertical nanostructured materials are set to spur transformative progress in modulating cellular processes and interrogations. In particular, the intracellular delivery—a core concept in fundamental and translational biomedical research—holds great promise for developing novel cell therapies based on gene modification. This study demonstrates the development of a mechanotransfection platform comprising vertically aligned silicon nanotube (VA‐SiNT) arrays for ex vivo gene editing. The internal hollow structure of SiNTs allows effective loading of various biomolecule cargoes; and SiNTs mediate delivery of those cargoes into GPE86 mouse embryonic fibroblasts without compromising their viability. Focused ion beam scanning electron microscopy (FIB‐SEM) and confocal microscopy results demonstrate localized membrane invaginations and accumulation of caveolin‐1 at the cell–NT interface, suggesting the presence of endocytic pits. Small‐molecule inhibition of endocytosis suggests that active endocytic process plays a role in the intracellular delivery of cargo from SiNTs. SiNT‐mediated siRNA intracellular delivery shows the capacity to reduce expression levels of F‐actin binding protein (Triobp) and alter the cellular morphology of GPE86. Finally, the successful delivery of Cas9 ribonucleoprotein (RNP) to specifically target mouse Hprt gene is achieved. This NT‐enhanced molecular delivery platform has strong potential to support gene editing technologies.
Intracellular trafficking governs receptor signaling, pathogenesis, immune responses and fate of nanomedicines. These processes are typically tracked by observing colocalization of fluorescent markers using confocal microscopy. However, this method is low throughput, limited by the resolution of microscopy, and can miss fleeting interactions. To address this, we developed a localization sensor composed of a quenched SNAP-tag substrate (SNAPSwitch) that can be conjugated to biomolecules using click chemistry. SNAPSwitch enables quantitative detection of trafficking to locations of interest within live cells using flow cytometry. Using SNAPSwitch, we followed the trafficking of DNA complexes from endosomes into the cytosol and nucleus. We show that antibodies against the transferrin or hyaluronan receptor are initially sorted into different compartments following endocytosis. In addition, we can resolve which side of the cellular membrane material was located. These results demonstrate SNAPSwitch is a high-throughput and broadly applicable tool to quantitatively track localization of materials in cells.
Per‐ and polyfluoroalkyl substances (PFAS) are a group of recalcitrant molecules that have been used since the 1940s in a variety of applications. They are now linked to a host of negative health outcomes and are extremely resistant to degradation under environmental conditions. Currently, membrane technologies or adsorbents are used to remediate contaminated water. These techniques are either inefficient at capturing smaller PFAS molecules, have high energy demands, or result in concentrated waste that must be incinerated at high temperatures. This Review focuses on what role metal‐organic frameworks (MOFs) may play in addressing the PFAS problem. Specifically, how the unique properties of MOFs such as their well‐defined pore sizes, ultra‐high internal surface area, and tunable surface chemistry may be a sustainable solution for PFAS contamination.
GeoScienceWorld provides an independent society‐driven collaborative publishing model that provides the benefits of scale to societies.
A mix of society oversight and business independence allows for decisions and strategies that balance mission with commerce.
Being flexible and adaptive is crucial to ensure business sustainability and continued alignment with society objectives.
Programme expansion is necessary to meet changing needs but needs to be mindful of existing in‐house and outsourced resources.
Collaborative programmes need to leverage the collective strength and expertise of partners alongside capable, agile, and entrepreneurial staff.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.