The development of Tyrosinase inhibitors (TYRIs) could represent an efficacious strategy for pharmacological intervention on skin pathologies related to aberrant production of melanin. Based on in silico studies we designed and tested a library of twenty-four compounds bearing the 4-(4-fluorobenzyl) piperazin-1-yl]-fragment. As result, we identified several compounds with excellent inhibit effects at low micromolar concentration against TYR from Agaricus bisporus (TyM). Among them, compound 25 (IC 50 ¼ 0.96 mM) proved to be~20-fold more potent than the reference compound kojic acid (IC 50 ¼ 17.76 mM) having wide applications in the cosmetics and pharmaceutical industries. The mode of interaction of active inhibitor 25 was deciphered by means of crystallography as well as molecular docking and these results were consistent with kinetic experiments. Moreover, the identified compound 25 exhibited no considerable cytotoxicity and showed anti-melanogenic effects on B16F10 melanoma cells. Therefore, a combination of computational and biochemical approaches could represent a rational guidelines for further structural modification of this class of compounds as future anti-melanogenic agents.
The inhibition of tyrosinase (Ty, EC 1.14.18.1) represents an efficient strategy of decreasing melanogenesis and skin hyperpigmentation. A combination of crystallographic and docking studies on two different tyrosinases, that from Bacillus megaterium (TyBm) and that from a mushroom (TyM), has contributed to increasing our knowledge about their structural information and translating that information to the most druggable human Ty (TyH) isozyme. In particular, we designed and synthesized a series of 1-(4-fluorobenzyl)piperazine and 1-(4-fluorobenzyl)piperidine derivatives showing inhibitory activities on TyM at micromolar ranges and more potency than that of the reference compound, kojic acid. The crystal structures of TyBm with inhibitor 3 (IC value of 25.11 μM) and 16 (IC value of 5.25 μM) were solved, confirming the binding poses hypothesized by in silico studies and revealing the main molecular determinants for the binding recognition of the inhibitors.
A conceptually novel, high‐yielding, mono‐ or bis‐homologation was realized with lithium halocarbenoids and enables the one‐step, fully chemocontrolled assembly of a new class of quaternary trifluoromethyl aziridines. Trifluoroacetimidoyl chlorides (TFAICs) act as convenient electrophilic platforms, enabling the addition of either one or two homologating elements by simply controlling the stoichiometry of the process. Mechanistic studies highlighted that the homologation event, carried out with two different carbenoids (LiCH
2
Cl and LiCH
2
F), leads to fluoromethyl analogues in which the first nucleophile is employed for constructing the cycle and the second for decorating the resulting molecular architecture.
The transfer of a reactive nucleophilic CH2X unit into a preformed bond enables the introduction of a fragment featuring the exact and desired degree of functionalization through a single synthetic operation. The instability of metallated α-organometallic species often poses serious questions regarding the practicability of using this conceptually intuitive and simple approach for forming C-C or C-heteroatom bonds. A deep understanding of processes regulating the formation of these nucleophiles is a precious source of inspiration not only for successfully applying theoretically feasible transformations (i.e. determining how to employ a given reagent), but also for designing new reactions which ultimately lead to the introduction of molecular complexity via short experimental sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.