Neurodegenerative processes are preceded by neuronal dysfunction and synaptic disconnection. Disconnection between spinal motoneuron (MN) soma and synaptic target leads either to a retrograde degenerative process or to a regenerative reaction, depending injury proximity among other factors. Distinguished key events associated with one or other processes may give some clues towards new therapeutical approaches based on boosting endogenous neuroprotective mechanisms. Root mechanical traction leads to retrograde MN degeneration, but share common initial molecular mechanisms with a regenerative process triggered by distal axotomy and suture. By 7 days post-injury, key molecular events starts to diverge and sign apart each destiny. We used comparative unbiased proteomics to define these signatures, coupled to a novel network-based analysis to get biological meaning. The procedure implicated the previous generation of combined topological information from manual curated 19 associated biological processes to be contrasted with the proteomic list using gene enrichment analysis tools. The novel and unexpected results suggested that motoneurodegeneration is better explained mainly by the concomitant triggering of anoikis, anti-apoptotic and neuropathic-pain related programs. In contrast, the endogenous neuroprotective mechanisms engaged after distal axotomy included specifically rather anti-anoikis and selective autophagy. Validated protein-nodes and processes are highlighted across discussion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.