Climate‐driven change represents the cumulative effect of global through local‐scale conditions, and understanding their manifestation at local scales can empower local management. Change in the dominance of habitats is often the product of local nutrient pollution that occurs at relatively local scales (i.e. catchment scale), a critical scale of management at which global impacts will manifest. We tested whether forecasted global‐scale change [elevated carbon dioxide (CO2) and subsequent ocean acidification] and local stressors (elevated nutrients) can combine to accelerate the expansion of filamentous turfs at the expense of calcifying algae (kelp understorey). Our results not only support this model of future change, but also highlight the synergistic effects of future CO2 and nutrient concentrations on the abundance of turfs. These results suggest that global and local stressors need to be assessed in meaningful combinations so that the anticipated effects of climate change do not create the false impression that, however complex, climate change will produce smaller effects than reality. These findings empower local managers because they show that policies of reducing local stressors (e.g. nutrient pollution) can reduce the effects of global stressors not under their governance (e.g. ocean acidification). The connection between research and government policy provides an example whereby knowledge (and decision making) across local through global scales provides solutions to some of the most vexing challenges for attaining social goals of sustainability, biological conservation and economic development.
By signing the Copyright Transfer Statement you still retain substantial rights, such as self-archiving:"Authors may self-archive the author's accepted manuscript of their articles on their own websites. Authors may also deposit this version of the article in any repository, provided it is only made publicly available 12 months after official publication or later. He/ she may not use the publisher's version (the final article), which is posted on SpringerLink and other Springer websites, for the purpose of self-archiving or deposit. Furthermore, the author may only post his/her version provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be provided by inserting the DOI number of the article in the following sentence: "The final publication is available at Springer via http://dx.doi.org/[insert DOI]"."
Variation in rates of herbivory may be driven by direct effects of the abiotic environment on grazers, as well as indirect effects mediated by their food. Disentangling these direct and indirect effects is of fundamental importance for ecological forecasts of changing climate on species interactions and their influence on biogenic habitat. Whilst elevated atmospheric CO 2 may have direct effects on grazers with calcareous structures via 'ocean acidification', it may also have indirect effects via changes caused to their food. In our study we initially tested, and confirmed, that enriched CO 2 altered per capita rates of grazing before assessing the relative importance of indirect and direct effects in driving this response. Our results eliminated the model of a direct effect of CO 2 enrichment on the grazers themselves and supported the model of an indirect effect driven by a change in the food (i.e. turf algae). We suggest that this indirect effect manifested as grazers responded to the increased nitrogen content (i.e. %N) of algal tissue that resulted under CO 2 enrichment. Understanding such indirect effects of modified environmental conditions provide important mechanistic links between climate conditions and the ecological processes they influence.KEY WORDS: Ocean acidification · Carbon dioxide · Climate change · Turf-forming algae · Habitat loss · Phase-shifts Resale or republication not permitted without written consent of the publisher
Summary1. Synergies among stressors drive unanticipated changes to alternative states, yet little has been done to assess whether alleviating one or more contributing stressors may disrupt these interactions. It would be particularly useful to understand whether the synergistic effects of global and local stressors could be alleviated, leading to slower change or faster recovery, if conditions under the control of local management alone were managed (i.e. nutrient pollution). 2. We utilized field-based mesocosms to manipulate CO 2 (i.e. forecasted global concentrations) and nutrients (i.e. local pollution) to test the hypothesis that, where synergies exist, reducing one contributing stressor would limit the effect of the other. In testing this hypothesis, we considered the response of turfing algae, which can displace kelp forests on urbanized coastlines. 3. Initial manipulations of CO 2 and nutrient enrichment produced an anticipated synergistic effect on the biomass of turfing algae. 4. Following exposure of algal turfs to a combination of enriched nutrients and CO 2 , a subsequent reduction in nutrients was able to substantially slow further increases in turf growth. Despite this substantial effect, the historical legacy of previous nutrient enrichment was evident as greater turf was maintained relative to ambient conditions (i.e. ambient CO 2 and nutrients). Such legacies of past stressors may be stubborn (e.g. persist as intergenerational change) where the alternative state (i.e. turf algae) has substantial resilience to restorative actions. 5. Synthesis and applications. As stressors accumulate across global to local scales, some combine to produce synergistic effects which cause changes of disproportionate ecological magnitude. While strong synergies attract heavy scrutiny, there remains substantial merit in assessing whether their influence can be ameliorated by managing a contributing stressor. Of note, we show that by reducing a locally determined stressor (nutrients), its synergistic effects with a globally determined stressor (CO 2 enrichment) on a key taxon (turf algae) may be substantially reduced. These results suggest that in the face of changing climate (e.g. ocean acidification), the management of local stressors (e.g. water pollution) may have a greater contribution in determining the dominant state than current thinking allows.
Foundation species, such as kelp, exert disproportionately strong community effects and persist, in part, by dominating taxa that inhibit their regeneration. Human activities which benefit their competitors, however, may reduce stability of communities, increasing the probability of phase-shifts. We tested whether a foundation species (kelp) would continue to inhibit a key competitor (turf-forming algae) under moderately increased local (nutrient) and near-future forecasted global pollution (CO2). Our results reveal that in the absence of kelp, local and global pollutants combined to cause the greatest cover and mass of turfs, a synergistic response whereby turfs increased more than would be predicted by adding the independent effects of treatments (kelp absence, elevated nutrients, forecasted CO2). The positive effects of nutrient and CO2 enrichment on turfs were, however, inhibited by the presence of kelp, indicating the competitive effect of kelp was stronger than synergistic effects of moderate enrichment of local and global pollutants. Quantification of physicochemical parameters within experimental mesocosms suggests turf inhibition was likely due to an effect of kelp on physical (i.e. shading) rather than chemical conditions. Such results indicate that while forecasted climates may increase the probability of phase-shifts, maintenance of intact populations of foundation species could enable the continued strength of interactions and persistence of communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.