Engineering drawings are commonly used in different industries such as Oil and Gas, construction, and other types of engineering. Digitising these drawings is becoming increasingly important. This is mainly due to the need to improve business practices such as inventory, assets management, risk analysis, and other types of applications. However, processing and analysing these drawings is a challenging task. A typical diagram often contains a large number of different types of symbols belonging to various classes and with very little variation among them. Another key challenge is the class-imbalance problem, where some types of symbols largely dominate the data while others are hardly represented in the dataset. In this paper, we propose methods to handle these two challenges. First, we propose an advanced bounding-box detection method for localising and recognising symbols in engineering diagrams. Our method is end-to-end with no user interaction. Thorough experiments on a large collection of diagrams from an industrial partner proved that our methods accurately recognise more than 94% of the symbols. Secondly, we present a method based on Deep Generative Adversarial Neural Network for handling class-imbalance.The proposed GAN model proved to be capable of learning from a small number of training examples. Experiment results showed that the proposed method greatly improved the classification of symbols in engineering drawings.
Engineering drawings such as Piping and Instrumentation Diagrams contain a vast amount of text data which is essential to identify shapes, pipeline activities, tags, amongst others. These diagrams are often stored in undigitised format, such as paper copy, meaning the information contained within the diagrams is not readily accessible to inspect and use for further data analytics. In this paper, we make use of the benefits of recent deep learning advances by selecting models for both text detection and text recognition, and apply them to the digitisation of text from within real world complex engineering diagrams. Evaluation of such deep learning methods on a dataset of Piping and Instrumentation Diagrams from the Oil & Gas industry showed promising results on detecting and recognising text, without the need for pre-processing steps in complex engineering diagrams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.