Impatiens necrotic spot virus (INSV; family Tospoviridae, genus Orthotospovirus) is a thrips-borne pathogen that infects a wide range of ornamental and vegetable crops. INSV was first reported in lettuce (Lactuca sativa) in the Salinas Valley of CA (Monterey County) in 2006 (Koike et al. 2008). Since then, the pathogen has continued to impact lettuce production in the region, causing severe economic losses with increasing incidence and severity in recent years. Tomato spotted wilt virus (TSWV), another tospovirus, also infects lettuce, but its occurrence is much less frequent than INSV (Kuo et al. 2014). While INSV has not been reported in the desert areas of CA and AZ, there are concerns that the virus could become established in this region. In early March 2021, symptoms resembling those caused by orthotospovirus infection were observed in several romaine and iceberg lettuce fields in the Yuma and Tacna regions of Yuma County, AZ. Symptoms included leaves that exhibited tan to dark brown necrotic spots, distorted leaf shapes, and stunted plant growth. Similar symptoms were also reported in romaine fields and one green leaf and iceberg lettuce field in the neighboring Imperial and Riverside Counties of CA. A total of 14 samples (5 from Tacna, 4 from Yuma, 4 from Imperial, 1 from Riverside) were tested using ImmunoStrips (Agdia, Elkhart, IN) for INSV and TSWV. Results confirmed the presence of INSV in 13 out of 14 samples, and the absence of INSV in one sample originating from Yuma. All 14 samples tested negative for TSWV. The 13 INSV positive samples were processed for RT-PCR validation. Total RNA was extracted from each sample using the RNeasy Plant Mini Kit (Qiagen, Valencia, CA). RT-PCR was performed with OneStep Ahead RT-PCR Kit (Qiagen) with primers to the N gene of INSV S RNA (Accession KF745140.1; INSV F = CCAAATACTACTTTAACCGCAAGT; INSV R = ACACCCAAGACACAGGATTT). All reactions generated a single amplicon at the correct size of 524 bp. One sample each from Yuma, Tacna, and Brawley (Imperial County), as well as a romaine lettuce sample collected from the Salinas Valley in March 2021, were sent for Sanger bi-directional sequencing (Eton Biosciences, San Diego, CA). Sequence analysis revealed that all three desert samples (Yuma, Tacna, and Brawley with Accessions OK340696, OK340697, OK340698, respectively) shared 100% sequence identity and 99.43% identity to the Salinas Valley 2021 sample (SV-L2, Accession OK340699). Additionally, all desert samples shared 99.24% sequence identity to the Salinas Valley lettuce isolate previously described in 2014 (SV-L1, Accession KF745140.1; Kuo et al. 2014), while the SV-L2 and SV-L1 sequences shared 99.43% identity. By the end of the season (April 2021) a total of 43 lettuce fields in Yuma County, AZ, and 9 fields in Imperial and Riverside Counties, CA were confirmed to have INSV infection using ImmunoStrips. Impacted fields included romaine, green leaf, red leaf, and head lettuce varieties, and both direct-seeded and transplanted lettuce, under conventional and organic management regimes. In AZ, INSV incidence in fields ranged between 0.2% and 33%, while in Imperial and Riverside Counties, CA, field incidence remained low at less than 0.1%. It is possible that INSV was introduced from the Salinas Valley of CA through the movement of infected lettuce transplants and/or thrips vectors. To our knowledge, this is the first report of INSV infecting lettuce in Arizona and the southern desert region of California.
Tomato chlorosis virus (ToCV; genus Crinivirus, family Closteroviridae) was identified in tomato crops in the state of São Paulo, Brazil in 2006. Management strategies to control external sources of inoculum are necessary, because chemical control of the whitefly vector Bemisia tabaci MEAM1 has not efficiently prevented virus infections and no commercial tomato cultivars or hybrids are resistant to this crinivirus. We first evaluated the natural infection rate of some known wild and cultivated ToCV-susceptible hosts and their attractiveness for B. tabaci MEAM1 oviposition. Physalis angulata was the most susceptible to natural infection in all six exposures in 2018 and 2019. No plants of Capsicum annuum (cv. Dahra) or Chenopodium album became infected. Solanum melongena (cv. Napoli) had only two infected plants of 60 exposed. C. annuum and C. album were the least preferred, and Nicotiana tabacum and S. melongena were the most preferred for whitefly oviposition. In addition, from 2016 to 2019, we surveyed different tomato crops and the surrounding vegetation to identify ToCV in weeds and cultivated plants in the region of Sumaré, São Paulo state. Only Solanum americanum, vila vila (S. sisymbriifolium) and C. album were found naturally infected, with incidences of 18%, 20% and 1.4%, respectively. Finally, we estimated the ToCV titer (isolates ToCV-FL, USA and ToCV-SP, Brazil) by RT-qPCR in different ToCV-susceptible host plants and evaluated the relationship between virus acquisition and transmission by B. tabaci MEAM1. The results clearly showed significant differences in ToCV concentrations in the tissues of ToCV-susceptible host plants, which appeared to be influenced by the virus isolate. The concentration of the virus in plant tissues, in turn, directly influenced the ToCV-B. tabaci MEAM1 relationship and subsequent transmission to tomato plants. To minimize or prevent the damage from the tomato yellowing disease through management of external sources of ToCV, it is necessary to correctly identify the potentially important ToCV-susceptible hosts in the vicinity of new plantings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.