We introduce a new methodology for analyzing serial data by quantile regression assuming that the underlying quantile function consists of constant segments. The procedure does not rely on any distributional assumption besides serial independence. It is based on a multiscale statistic, which allows to control the (finite sample) probability for selecting the correct number of segments S at a given error level, which serves as a tuning parameter. For a proper choice of this parameter, this tends exponentially fast to the true S, as sample size increases. We further show that the location and size of segments are estimated at minimax optimal rate (compared to a Gaussian setting) up to a log-factor. Thereby, our approach leads to (asymptotically) uniform confidence bands for the entire quantile regression function in a fully nonparametric setup. The procedure is efficiently implemented using dynamic programming techniques with double heap structures, and software is provided. Simulations and data examples from genetic sequencing and ion channel recordings confirm the robustness of the proposed procedure, which at the same hand reliably detects changes in quantiles from arbitrary distributions with precise statistical guarantees.
We propose and investigate a hidden Markov model (HMM) for the analysis of aggregated, super-imposed two-state signal recordings. A major motivation for this work is that often these recordings cannot be observed individually but only their superposition. Among others, such models are in high demand for the understanding of cross-talk between ion channels, where each single channel might take two different states which cannot be measured separately. As an essential building block we introduce a parametrized vector norm dependent Markov chain model and characterize it in terms of permutation invariance as well as conditional independence. This leads to a hidden Markov chain "sum" process which can be used for analyzing aggregated two-state signal observations within a HMM. Additionally, we show that the model parameters of the vector norm dependent Markov chain are uniquely determined by the parameters of the "sum" process and are therefore identifiable. Finally, we provide algorithms to estimate the parameters and apply our methodology to real-world ion channel data measurements, where we show competitive gating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.