Parallel face-to-face arene-arene complexes between benzene and substituted benzenes have been investigated at the MP2(full)/6-311G** and M05-2X/6-311G** levels of theory. A reasonably good correlation was found between the binding energies and the ∑|σ(m)| values of the substituted aromatics. It is proposed that a substituent |σ(m)| value informs on both the aromatic substituent dispersion/polarizability and the effect the substituent has on the aromatic electrostatics. Supporting this hypothesis, a combination of electrostatic (∑σ(m)) and dispersion/polarizability (∑M(r)) substituent constant terms gives an excellent, and statistically significant, correlation with the benzene-substituted benzene binding energy. Symmetry adapted perturbation theory energy decomposition calculations show the dominant attractive force is dispersion; however, the sum of all nonelectrostatic forces is essentially a constant, while the electrostatic component varies significantly. This explains the importance of including an electrostatic term when predicting benzene-substituted benzene binding energies.
Non-covalent interactions of aromatics are important in a wide range of chemical and biological applications. The past two decades have seen numerous reports of arene-arene binding being understood in terms Hammett substituent constants, and similar analyses have recently been extended to cation-arene and anion-arene binding. It is not immediately clear why electrostatic Hammett parameters should work so well in predicting the binding for all three interactions, given that different intermolecular forces dominate each interaction. This review explores such anomalies, and summarizes how Hammett substituent constants have been employed to understand the non-covalent binding in arene-arene, cation-arene and anion-arene interactions.
DNA intercalators are commonly used as anti-cancer and anti-tumor agents. As a result, it is imperative to understand how changes in intercalator structure affect binding affinity to DNA. Amonafide and mitonafide, two naphthalimide derivatives that are active against HeLa and KB cells in vitro, were previously shown to intercalate into DNA. Here, a systematic study was undertaken to change the 3-substituent on the aromatic intercalator 1,8-naphthalimide to determine how 11 different functional groups with a variety of physical and electronic properties affect binding of the naphthalimide to DNA and RNA duplexes of different sequence compositions and lengths. Wavelength scans, NMR titrations, and circular dichroism were used to investigate the binding mode of 1,8-naphthalimide derivatives to short synthetic DNA. Optical melting experiments were used to measure the change in melting temperature of the DNA and RNA duplexes due to intercalation, which ranged from 0 to 19.4°C. Thermal stabilities were affected by changing the substituent, and several patterns and idiosyncrasies were identified. By systematically varying the 3-substituent, the binding strength of the same derivative to various DNA and RNA duplexes was compared. The binding strength of different derivatives to the same DNA and RNA sequences was also compared. The results of these comparisons shed light on the complexities of site specificity and binding strength in DNA-intercalator complexes. For example, the consequences of adding a 5'-TpG-3' or 5'-GpT-3' step to a duplex is dependent on the sequence composition of the duplex. When added to a poly-AT duplex, naphthalimide binding was enhanced by 5.6-11.5°C, but when added to a poly-GC duplex, naphthalimide binding was diminished by 3.2-6.9°C.
A series of substituted naphthalimides were synthesized and intercalated into the DNA sequence d(GCGCGCGC) 2 , and an experimental ΔT m value was obtained. Two-parameter QSAR analyses were performed to generate a theoretical ΔT m value. Although by no means exhaustive in terms of parameter selection, the correlations did not yield statistics that indicated the models met the threshold for significance at the 95% confidence level. Rather than continue with an exhaustive search of all possible QSAR parameters, a one-parameter QSAR analysis was performed utilizing a novel arene-arene stacking parameter, designated Π π , developed from Symmetry-Adapted Perturbation Theory (SAPT) energy decomposition studies of calculated benzene-substituted benzene dimer binding energies. The QSAR analysis using the Π π stacking parameter yielded statistics suggesting the model was significant at the 95% confidence level. The approach of developing a novel QSAR parameter via SAPT calculations, rather than exhaustively searching all traditional QSAR parameters, is presented both as a new approach for QSAR studies and as a unique application of SAPT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.