[1] The relationship between the chemical and isotopic composition of groundwater and residence times was used to understand the temporal variability in stream hydrochemistry in Sagehen basin, California. On the basis of the relationship between groundwater age and [Ca 2+ ], the mean residence time of groundwater feeding Sagehen Creek during base flow is approximately 28 years. [Cl À ]: [Ca 2+ ] ratios in Sagehen Creek can be used to distinguish between two important processes: changes in the apparent age of groundwater discharging into the creek and dilution with snowmelt. The mean residence time of groundwater discharging into the creek is approximately 15 years during snowmelt periods. The results from this study have implications for hydrograph separation studies as groundwater is not a single, well-mixed chemical component but rather is a variable parameter that predictably depends on groundwater residence time. Most current models of catchment hydrochemistry do not account for chemical and isotopic variability found within the groundwater reservoir. In addition, this study provides valuable insight into the long-term hydrochemical response of a catchment to perturbations as catchmentflushing times are related to the mean residence time of water in a basin.
Variations in stable isotope ratios of redox sensitive elements are often used to understand redox processes occurring near the Earth's surface. Presented here are measurements of mass-dependent U isotope fractionation induced by U(VI) reduction by zerovalent iron (Fe0) and bacteria under controlled pH and HCO3- conditions. In abiotic experiments, Fe0 reduced U(VI), but the reaction failed to induce an analytically significant isotopic fractionation. Bacterial reduction experiments using Geobacter sulfurreducens and Anaeromyxobacter dehalogenans reduced dissolved U(VI) and caused enrichment of 238U relative to 235U in the remaining U(VI). Enrichmentfactors (epsilon) calculated using a Rayleigh distillation model are -0.31% per hundred and -0.34% per hundred for G. sulfurreducens and A. dehalogenans, respectively, under identical experimental conditions. Further studies are required to determine the range of possible values for 238U/235U fractionation factors under a variety of experimental conditions before broad application of these results is possible. However, the measurable variations in delta(5238)U show promise as indicators of reduction for future studies of groundwater contamination, geochronology, U ore deposit formation, and U biogeochemical cycling.
The critical zone (CZ) can be conceptualized as an open system reactor that is continually transforming energy and water fluxes into an internal structural organization and dissipative products. In this study, we test a controlling factor on water transit times (WTT) and mineral weathering called Effective Energy and Mass Transfer (EEMT). We hypothesize that EEMT, quantified based on local climatic variables, can effectively predict WTT within-and mineral weathering products from-the CZ. This study tests whether EEMT or static landscape characteristics are good predictors of WTT, aqueous phase solutes, and silicate weathering products. Our study site is located around Redondo Peak, a rhyolitic volcanic resurgent dome, in northern New Mexico. At Redondo Peak, springs drain slopes along an energy gradient created by differences in terrain aspect. This investigation uses major solute concentrations, the calculated mineral mass undergoing dissolution, and the age tracer tritium and relates them quantitatively to EEMT and landscape characteristics. We found significant correlations between EEMT, WTT, and mineral weathering products. Significant correlations were observed between dissolved weathering products (Na 1 and DIC), 3 H concentrations, and maximum EEMT. In contrast, landscape characteristics such as contributing area of spring, slope gradient, elevation, and flow path length were not as effective predictive variables of WTT, solute concentrations, and mineral weathering products. These results highlight the interrelationship between landscape, hydrological, and biogeochemical processes and suggest that basic climatic data embodied in EEMT can be used to scale hydrological and hydrochemical responses in other sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.