Co x Fe 3−x O 4 nanoparticles (x = 0.4 to x = 2.5) and thin films (x = 0.9 to x = 2.2) are analyzed by Raman, absorption, and photoluminescence spectroscopy to link structural and optical properties to different cobalt to iron (Co/Fe) ratios. Raman spectroscopy shows that with decreasing Co content, the crystal structure changes from a predominantly normal cubic spinel phase to a mixed inverse spinel phase. This finding is supported by absorption spectroscopy that points out that inter valence charge transfer (IVCT) processes between octahedrally coordinated Co 2+ and Fe 3+ cations become more prominent with increasing Fe content. Independent of the Co/Fe ratio, Co x Fe 3−x O 4 nanoparticles show a broad photoluminescence (PL) band with a maximum at around 510 nm. Time-resolved photoluminescence spectroscopy shows subnanosecond lifetimes and temperatureresolved photoluminescence experiments reveal that the green PL increases with decreasing temperature (300 to 10 K) while showing no temperature-dependent shift in energy. It is proposed that this green PL originates from OH-groups on the particles' surface.
Zinc sulfide has unique and easily modifiable photophysical properties and is a promising candidate for photocatalysis and optoelectronic devices. However, ZnS suffers from corrosive decomposition during excitation processes like UV irradiation, which drastically limits its field of potential applications. For the first time, complete photostabilization of individual ZnS particles by a dense, durable, and only 3-nm-thick Al 2 O 3 layer, produced by rotary atomic layer deposition (ALD) is reported. In contrast to bare ZnS, the coated particles do not suffer from photocorrosive degradation even under long-term or high power UV irradiation. The presence of a protection layer covering the entire ZnS surface is additionally confirmed by microscopic and spectroscopic investigations of particle cross-sections. Further, complete inhibition of the reaction between Ag + ions added as the analyte and the ZnS surface is observed. Durability tests of the as-prepared Al 2 O 3 layer upon prolonged exposure to water reveal a significant decrease in the protection capability of the layer, which is ascribed to the hydrolysis of the amorphous Al 2 O 3. A calcination step at 1000 °C after the ALD treatment, which leads to crystallization of the amorphous Al 2 O 3 layer, successfully suppresses this hydrolysis and produces an insulating, dense, and inert protection layer.
CoxFe3−xO4 (0.4 < x < 2.5) nanoparticles show a broad green emission induced by surface OH-groups with a lower stability regarding UV-photoinduced dehydroxylation on Fe-rich (x ≤ 1.6) nanoparticles.
Spectroscopic methods enabling real-time monitoring of dynamic surface processes are a prerequisite for identifying how a catalyst triggers a chemical reaction. We present an in situ photoluminescence spectroscopy approach for probing the thermo-catalytic 2-propanol oxidation over mesostructured Co3O4 nanowires. Under oxidative conditions, a distinct blue emission at ~420 nm is detected that increases with temperature up to 280 °C, with an intermediate maximum at 150 °C. Catalytic data gained under comparable conditions show that this course of photoluminescence intensity precisely follows the conversion of 2-propanol and the production of acetone. The blue emission is assigned to the radiative recombination of unbound acetone molecules, the n - π* transition of which is selectively excited by a wavelength of 270 nm. These findings open a pathway for studying thermo-catalytic processes via in situ photoluminescence spectroscopy thereby gaining information about the performance of the catalyst and the formation of intermediate products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.