Purpose: Up to 30% of patients with breast cancer relapse after primary treatment. There are no sensitive and reliable tests to monitor these patients and detect distant metastases before overt recurrence. Here, we demonstrate the use of personalized circulating tumor DNA (ctDNA) profiling for detection of recurrence in breast cancer.Experimental Design: Forty-nine primary patients with breast cancer were recruited following surgery and adjuvant therapy. Plasma samples (n ¼ 208) were collected every 6 months for up to 4 years. Personalized assays targeting 16 variants selected from primary tumor whole-exome data were tested in serial plasma for the presence of ctDNA by ultradeep sequencing (average >100,000X).Results: Plasma ctDNA was detected ahead of clinical or radiologic relapse in 16 of the 18 relapsed patients (sensitivity of 89%); metastatic relapse was predicted with a lead time of up to 2 years (median, 8.9 months; range, 0.5-24.0 months). None of the 31 nonrelapsing patients were ctDNA-positive at any time point across 156 plasma samples (specificity of 100%). Of the two relapsed patients who were not detected in the study, the first had only a local recurrence, whereas the second patient had bone recurrence and had completed chemotherapy just 13 days prior to blood sampling.Conclusions: This study demonstrates that patientspecific ctDNA analysis can be a sensitive and specific approach for disease surveillance for patients with breast cancer. More importantly, earlier detection of up to 2 years provides a possible window for therapeutic intervention. Personalized profiling detects rising ctDNA ahead of clinical relapse. A-E, Plasma levels of ctDNA across serial plasma time points for five patients with breast cancer (one per panel). Mean VAFs are denoted by a dark blue circle, and solid lines represent the average VAF profile over time. The lead time is calculated as the time interval between clinical relapse (red triangle) and molecular relapse (blue triangle). CA 15-3 levels are graphed over time (teal circle), and the baseline levels (32 U/mL) are marked in light blue. F, Summary of percent VAF and number of targets detected at molecular and clinical relapse for all ctDNA-positive samples. Data are from 13 relapsed patients, excluding three patients with only one plasma time point. Coombes et al.
The integrin a v b 3 receptor is upregulated on tumor cells and endothelium and plays important roles in angiogenesis and metastasis. Arg-Gly-Asp (RGD) peptide ligands have high affinity for these integrins and can be radiolabeled for PET imaging of angiogenesis or tumor development. We have assessed the safety, stability, and tumor distribution kinetics of a novel radiolabeled RGD-based integrin peptide-polymer conjugate, 18 F-AH111585, and its feasibility to detect tumors in metastatic breast cancer patients using PET. Methods: The biodistribution of 18 F-AH111585 was assessed in 18 tumor lesions from 7 patients with metastatic breast cancer by PET, and the PET data were compared with CT results. The metabolic stability of 18 F-AH111585 was assessed by chromatography of plasma samples. Regions of interest (ROIs) defined over tumor and normal tissues of the PET images were used to determine the kinetics of radioligand binding in tissues. Results: The radiopharmaceutical and PET procedures were well tolerated in all patients. All 18 tumors detected by CT were visible on the 18 F-AH111585 PET images, either as distinct increases in uptake compared with the surrounding normal tissue or, in the case of liver metastases, as regions of deficit uptake because of the high background activity in normal liver tissue. 18 F-AH111585 was either homogeneously distributed in the tumors or appeared within the tumor rim, consistent with the pattern of viable peripheral tumor and central necrosis often seen in association with angiogenesis. Increased uptake compared with background (P 5 0.002) was demonstrated in metastases in lung, pleura, bone, lymph node, and primary tumor. Conclusion: 18 F-AH111585 designed to bind the a v b 3 integrin is safe, metabolically stable, and retained in tumor tissues and detects breast cancer lesions by PET in most anatomic sites.
[18F]FLT-PET can detect changes in breast cancer proliferation at 1 week after FEC chemotherapy.
There is an unmet need to develop imaging methods for the early and objective assessment of breast tumors to therapy. 18 F]FLT (K i ) ranged from 0.6 to 10.4 Â 10 À4 and from 0 to 0.6 Â 10 À4 mL plasma cleared/s/mL tissue in tumor (29 regions, 15 patients) and normal tissues, respectively. Tumor K i and fractional retention of radiotracer determined by spectral analysis correlated with Ki-67 labeling index (r = 0.92, P < 0.0001 and r = 0.92, P < 0.0001, respectively). These correlations were superior to those determined by semiquantitative methods. We conclude that [ 18 F]FLT-positron emission tomography is a promising clinical tool for imaging cellular proliferation in breast cancer, and is most predictive when analyzed by graphical and spectral methods. (Cancer Res 2005; 65(21): 10104-12)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.