Tick-borne encephalitis virus (TBEV) is one of the most common zoonotic vector-borne infections in Europe. An appropriate awareness is crucial to react quickly and efficiently to protect humans from this pathogen. From winter 2017 until spring 2018 serum samples were collected from 71 small ruminant flocks (3174 animals) in five German federal states. The sera were examined for TBEV antibodies by ELISA and serum neutralization test. In the TBEV risk areas, there was a coincidence in 14 districts between seropositive small ruminants and the occurrence of human TBE cases in 2017. In eight districts, the TBEV infection could not be detected in small ruminants although human cases were reported. In contrast, in five districts, small ruminants tested TBEV seropositive without notified human TBE cases in 2017. A changing pattern of TBEV circulation in the environment was observed by the absence of antibodies in a defined high-risk area. In the non-TBE risk areas, seropositive small ruminants were found in five districts. In two districts with a low human incidence the infection was missed by the small ruminant sentinels. An intra-herd prevalence of 12.5% was determined in a goat flock in the non-TBE risk area in 2017, two years prior the first autochthone human case was reported. All sheep and goats in this flock were examined for TBEV antibodies for three years. Individual follow-up of twelve small ruminants was possible and revealed mostly a short lifespan of TBEV antibodies of less than one year. The probability to identify TBEV seropositive sheep flocks was enhanced in flocks kept for landscape conservation or which were shepherded ( p < 0.05). Our preliminary observations clearly demonstrated the successful utilization of small ruminants as sentinel animals for TBEV.
Usutu virus (USUV) is a zoonotic arbovirus causing avian mass mortalities. The first outbreak in North-Western Germany occurred in 2018. This retrospective analysis focused on combining virological and pathological findings in birds and immunohistochemistry. 25 common blackbirds, one great grey owl, and one kingfisher collected from 2011 to 2018 and positive for USUV by qRT-PCR were investigated. Macroscopically, most USUV infected birds showed splenomegaly and hepatomegaly. Histopathological lesions included necrosis and lymphohistiocytic inflammation within spleen, Bursa fabricii, liver, heart, brain, lung and intestine. Immunohistochemistry revealed USUV antigen positive cells in heart, spleen, pancreas, lung, brain, proventriculus/gizzard, Bursa fabricii, kidney, intestine, skeletal muscle, and liver. Analysis of viral genome allocated the virus to Europe 3 or Africa 2 lineage. This study investigated whether immunohistochemical detection of double-stranded ribonucleic acid (dsRNA) serves as an alternative tool to detect viral intermediates. Tissue samples of six animals with confirmed USUV infection by qRT-PCR but lacking viral antigen in liver and spleen, were further examined immunohistochemically. Two animals exhibited a positive signal for dsRNA. This could indicate either an early state of infection without sufficient formation of virus translation products, occurrence of another concurrent virus infection or endogenous dsRNA not related to infectious pathogens and should be investigated in more detail in future studies.
The newly discovered group of Jingmenviruses has been shown to infect a wide range of hosts and has been associated with febrile illness in humans. During a survey for Jingmenviruses in ticks from Lower Saxony, Germany, Alongshan virus (ALSV) was identified in Ixodes spp. ticks. Additional virus screenings revealed the presence of ALSV in the bodies and saliva of ticks collected at several locations in Lower Saxony. Vector competence studies that included Ixodes ricinus and Dermacentor reticulatus validated the replication of ALSV within those tick species. In vitro feeding experiments with ALSV-injected Ixodes ricinus demonstrated effective viral transmission during blood feeding. To evaluate the potential viral transmission during a natural blood meal, sera from wild game and domestic animals were investigated. One serum sample from a red deer was found to be positive for ALSV RNA, while serological screenings in game and domestic animals revealed the presence of ALSV-specific antibodies at different locations in Lower Saxony. Overall, those results demonstrate the broad distribution of ALSV in ticks in Lower Saxony and hypothesize frequent exposure to animals based on serological investigations. Hence, its potential risk to human and animal health requires further investigation.
Flavivirus diagnostics are complicated by substantial cross-reactivity of antibodies between different flavivirus species. This is of particular importance in regions with multiple endemic flaviviruses in co-circulation. Tick-borne encephalitis virus (TBEV) is the causative agent of tick-borne encephalitis, the most common infection of the central nervous system in endemic regions of Europe and Asia. Since 2018, the related West Nile virus (WNV) has spread to Germany where its geographic distribution overlaps with TBEV endemic regions. Besides humans, various animal species are susceptible to TBEV and WNV infection. To compare antibody responses against these flaviviruses and test for cross-reactivity, we developed a multi-species luciferase immunoprecipitation system antibody detection assay for several different antigens.We performed a serosurvey of 682 dogs from five different European countries to detect antibodies against TBEV and WNV. Twelve specimens were positive for TBEV NS1 only and seven for WNV NS1 only. Two specimens were reactive to both NS1 antigens and another two were equivocal for WNV NS1. Interestingly, 89.5% of positive specimens had TBEV/WNV or WNV/TBEV signal ratios of 10 to >300 between individual NS1 antigens, allowing for a clear distinction between the two viruses. The remaining 10.5% of reactive specimens showed a five-to 10-fold difference between the two viruses and included possible dual exposures to both viruses. In contrast, equivocal samples showed low signal ratios between the NS1 antigens, suggesting unspecific reactivity. Based on these data, we found the NS1 protein to be a suitable antigen to distinguish between TBEV-and WNV-specific antibodies in dogs with sensitivity and specificity similar to virus neutralization tests.
The intracellular bacteria Anaplasma spp. and Coxiella burnetii and the tick-borne encephalitis virus (TBEV) are tick-transmitted pathogens circulating in the southern German sheep population. Knowledge of interaction among Anaplasma spp., C. burnetii and TBEV in sheep is lacking, but together they might promote and reinforce disease progression. The current study aimed to identify co-exposure of sheep to Anaplasma spp., C. burnetii and TBEV. For this purpose, 1,406 serum samples from 36 sheep flocks located in both southern German federal states, Baden-Wuerttemberg and Bavaria, were analysed by ELISAs to determine the antibody levels of the three pathogens. Inconclusive and positive results from the TBEV ELISA were additionally confirmed by a serum neutralisation assay. The proportion of sheep with antibodies against Anaplasma spp. (47.2%), C. burnetii (3.7%) and TBEV (4.7%) differed significantly. Significantly more flocks with Anaplasma spp. seropositive sheep (91.7%) were detected than flocks with antibodies against TBEV (58.3%) and C. burnetii (41.7%), but there was no significant difference between the number of flocks which contained TBEV and C. burnetii seropositive sheep. Seropositivity against at least two pathogens was detected in 4.7% of sheep from 20 flocks. Most co-exposed sheep had antibodies against Anaplasma spp./TBEV (n = 36), followed by Anaplasma spp./C. burnetii (n = 27) and Anaplasma spp./C. burnetii/TBEV (n = 2). Only one sheep showed an immune response against C. burnetii and TBEV. Flocks with sheep being positive against more than one pathogen were widely distributed throughout southern Germany. The descriptive analysis revealed no association between the antibody response of the three pathogens at animal level. Taking the flocks as a cluster variable into account, the exposure to TBEV reduced the probability of identifying C. burnetii antibodies in sheep significantly (odds ratio 0.46; 95% confidence interval 0.24–0.85), but the reason for this is unknown. The presence of Anaplasma spp. antibodies did not influence the detection of antibodies against C. burnetii and TBEV. Studies under controlled conditions are necessary to evaluate any possible adverse impact of co-exposure to tick-borne pathogens on sheep health. This can help to clarify rare disease patterns. Research in this field may also support the One Health approach due to the zoonotic potential of Anaplasma spp., C. burnetii and TBEV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.