Dosages of micafungin 100 mg daily and 150 mg daily were noninferior to a standard dosage of caspofungin for the treatment of candidemia and other forms of invasive candidiasis.
Candida
auris, a new multidrug-resistant Candida spp. which is associated with invasive infection and high rates of mortality, has recently emerged. Here, we determined the virulence factors (germination, adherence, biofilm formation, phospholipase and proteinase production) of 16 C. auris isolates and their susceptibilities to 11 drugs belonging to different antifungal classes, including a novel orally bioavailable 1,3-β-d-glucan synthesis inhibitor (SCY-078). We also examined the effect of SCY-078 on the growth, ultrastructure, and biofilm-forming abilities of C. auris. Our data showed that while the tested strains did not germinate, they did produce phospholipase and proteinase in a strain-dependent manner and had a significantly reduced ability to adhere and form biofilms compared to that of Candida albicans (P = 0.01). C. auris isolates demonstrated reduced susceptibility to fluconazole and amphotericin B, while, in general, they were susceptible to the remaining drugs tested. SCY-078 had an MIC90 of 1 mg/liter against C. auris and caused complete inhibition of the growth of C. auris and C. albicans. Scanning electron microscopy analysis showed that SCY-078 interrupted C. auris cell division, with the organism forming abnormal fused fungal cells. Additionally, SCY-078 possessed potent antibiofilm activity, wherein treated biofilms demonstrated significantly reduced metabolic activity and a significantly reduced thickness compared to the untreated control (P < 0.05 for both comparisons). Our study shows that C. auris expresses several virulence determinants (albeit to a lesser extent than C. albicans) and is resistant to fluconazole and amphotericin B. SCY-078, the new orally bioavailable antifungal, had potent antifungal/antibiofilm activity against C. auris, indicating that further evaluation of this antifungal is warranted.
Isavuconazole, the active moiety of the water-soluble prodrug isavuconazonium sulfate, is a triazole antifungal agent used for the treatment of invasive fungal infections. The objective of this analysis was to develop a population pharmacokinetic (PPK) model to identify covariates that affect isavuconazole pharmacokinetics and to determine the probability of target attainment (PTA) for invasive aspergillosis patients. Data from nine phase 1 studies and one phase 3 clinical trial (SECURE) were pooled to develop the PPK model (NONMEM, version 7.2). Stepwise covariate modeling was performed in Perl-speaks-NONMEM, version 3.7.6. The area under the curve (AUC) at steady state was calculated for 5,000 patients by using Monte Carlo simulations. The PTA using the estimated pharmacodynamic (PD) target value (total AUC/MIC ratio) estimated from in vivo PD studies of invasive aspergillosis over a range of MIC values was calculated using simulated patient AUC values. A two-compartment model with a Weibull absorption function and a first-order elimination process adequately described plasma isavuconazole concentrations.
In this cohort of 842 adults with candidemia followed up prospectively, early CVC removal was not associated with any clinical benefit. These findings suggest an evidence-based re-evaluation of current treatment recommendations.
were examined. Micafungin exposures were estimated using a population pharmacokinetic model, and univariable and multivariable logistic regressions were used to identify factors associated with outcome, including the micafungin area under the concentration-time curve (AUC)/MIC ratio. Monte Carlo simulation was used to evaluate the probability of achieving AUC/MIC ratios associated with efficacy. Mycological and clinical success rates for evaluable cases were 89.4 and 90.9, respectively. MIC 50 s and MIC 90 s for Candida species inhibition were 0.008 and 0.5 mg/liter, respectively. The median AUC/MIC ratio was 15,511 (range, 41.28 to 98,716). Univariable analyses revealed a significant relationship between the AUC/MIC ratio and mycological response, with the worst response being among patients with lower (<3,000) AUC/MIC ratios (P ؍ 0.005). For patients with Candida parapsilosis, AUC/MIC ratios of >285 were predictive of a higher mycological response (P ؍ 0.11). Multivariable logistic regression demonstrated the AUC/MIC ratio, APACHE II score, and history of corticosteroid use to be significant independent predictors of a favorable response. PK-PD target attainment analyses suggested that 76.7% and 100% of patients would achieve an AUC/MIC ratio of >3,000 for an MIC of 0.03 mg/liter and an AUC/MIC ratio of >285 for an MIC of <0.5 mg/liter, respectively. The identification of a lower AUC/MIC ratio target for C. parapsilosis than other Candida species suggests consideration of species-specific echinocandin susceptibility breakpoints and values that are lower than those currently approved by regulatory agencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.