[1] Starting in Late Pleistocene time ($19 ka), sea level rise inundated coastal zones worldwide. On some parts of the present-day circum-Arctic continental shelf, this led to flooding and thawing of formerly subaerial permafrost and probable dissociation of associated gas hydrates. Relict permafrost has never been systematically mapped along the 700-km-long U.S. Beaufort Sea continental shelf and is often assumed to extend to $120 m water depth, the approximate amount of sea level rise since the Late Pleistocene. Here, 5,000 km of multichannel seismic (MCS) data acquired between 1977 and 1992 were examined for high-velocity (>2.3 km s À1 ) refractions consistent with ice-bearing, coarse-grained sediments. Permafrost refractions were identified along <5% of the tracklines at depths of $5 to 470 m below the seafloor. The resulting map reveals the minimum extent of subsea ice-bearing permafrost, which does not extend seaward of 30 km offshore or beyond the 20 m isobath.
Seafloor pockmarks occur worldwide and may represent millions of m 3 of continental shelf erosion, but few numerical analyses of their morphology and spatial distribution of pockmarks exist. We introduce a quantitative definition of pockmark morphology and, based on this definition, propose a three-step geomorphometric method to identify and extract pockmarks from high-resolution swath bathymetry. We apply this GIS-implemented approach to 25 km 2 of bathymetry collected in the Belfast Bay, Maine USA pockmark field. Our model extracted 1767 pockmarks and found a linear pockmark depth-to-diameter ratio for pockmarks field-wide. Mean pockmark depth is 7.6 m and mean diameter is 84.8 m. Pockmark distribution is non-random, and nearly half of the field's pockmarks occur in chains. The most prominent chains are oriented semi-normal to the steepest gradient in Holocene sediment thickness. A descriptive model yields field-wide spatial statistics indicating that pockmarks are distributed in non-random clusters.Results enable quantitative comparison of pockmarks in fields worldwide as well as similar concave features, such as impact craters, dolines, or salt pools. Published by Elsevier B.V. IntroductionFirst identified in muddy sediments of the Scotian Shelf (King and MacLean, 1970), pockmarks are seafloor depressions that are found worldwide in a variety of geologic settings (Hovland and Judd, 1988;Judd and Hovland, 2007). These craters can measure hundreds of meters in diameter, may occur in chains kilometers long and, where present in extensive fields, may dominate the seafloor surface (Fader, 1991;Rogers et al., 2006;Pilcher and Argent, 2007). Despite global distribution and general association with seafloor fluid escape, the mechanisms for pockmark formation and evolution remain uncertain (Ussler et al., 2003).Analysis of pockmark morphology and spatial distribution relative to antecedent geology and subsurface fluids (e.g., methane) can provide insight into fluid-migration pathways, pockmark field evolution, and possible mechanisms for pockmark generation and maintenance. In the absence of high-resolution seafloor bathymetry data, previous characterizations of entire pockmark fields relied upon visual interpretation of acoustic backscatter data for pockmark delineation, size statistics and spatial distribution (Fader, 1991;Kelley et al., 1994;Gontz et al., 2002;Rogers et al., 2006). Although acoustic backscatter data were the best available in the cited studies, interpreting size dimensions of concave features, such as pockmarks from these data is often ambiguous (Song, 2007). High-resolution bathymetry data collected by multibeam echosounder and swath sonar technologies enable the study of seafloor morphology to reach scales and resolutions similar to studies in subaerial geomorphology based on digital elevation models (DEMs) (Hughes Clarke et al., 1996). With one exception ) these new technologies have not been applied to an entire pockmark field. Instead, whole-field spatial and morphologic analysis has ebbed, r...
Mechanisms and timescales responsible for pockmark formation and maintenance remain uncertain, especially in areas lacking extensive thermogenic fluid deposits (e.g., previously glaciated estuaries). This study characterizes seafloor activity in the Belfast Bay, Maine nearshore pockmark field using (1) three swath bathymetry datasets collected between 1999 and 2008, complemented by analyses of shallow box-core samples for radionuclide activity and undrained shear strength, and (2) historical bathymetric data (report and smooth sheets from 1872, 1947, 1948). In addition, because repeat swath bathymetry surveys are an emerging data source, we present a selected literature review of recent studies using such datasets for seafloor change analysis. This study is the first to apply the method to a pockmark field, and characterizes macro-scale (>5 m) evolution of tens of square kilometers of highly irregular seafloor. Presence/absence analysis yielded no change in pockmark frequency or distribution over a 9-year period (1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008). In that time pockmarks did not detectably enlarge, truncate, elongate, or combine. Historical data indicate that pockmark chains already existed in the 19th century. Despite the lack of macroscopic changes in the field, near-bed undrained shear-strength values of less than 7 kPa and scattered downcore 137 Cs signatures indicate a highly disturbed setting. Integrating these findings with independent geophysical and geochemical observations made in the pockmark field, it can be concluded that (1) large-scale sediment resuspension and dispersion related to pockmark formation and failure do not occur frequently within this field, and (2) pockmarks can persevere in a dynamic estuarine setting that exhibits minimal modern fluid venting. Although pockmarks are conventionally thought to be long-lived features maintained by a combination of fluid venting and minimal sediment accumulation, this suggests that other mechanisms may be equally active in maintaining such irregular seafloor morphology. One such mechanism could be upwelling within pockmarks induced by near-bed currents.
The U.S. Geological Survey (USGS) and the National Oceanic Atmospheric Administration (NOAA) have collected approximately 5400 km2 of geophysical and hydrographic data on the Atlantic continental shelf between Delaware and Virginia over the past decade and a half. Although originally acquired for different objectives, the comprehensive coverage and variety of data (bathymetry, backscatter, imagery and physical samples) presents an opportunity to merge collections and create high-resolution, broad-scale geologic maps of the seafloor. This compilation of data repurposes hydrographic data, expands the area of geologic investigation, highlights the versatility of mapping data, and creates new geologic products that would not have been independently possible. The data are classified using a variety of machine learning algorithms, including unsupervised and supervised methods. Four unique classes were targeted for classification, and source data include bathymetry, backscatter, slope, curvature, and shaded-relief. A random forest classifier used on all five source data layers was found to be the most accurate method for these data. Geomorphologic and sediment texture maps are derived from the classified acoustic data using over 200 ground truth samples. The geologic data products can be used to identify sediment sources, inform resource management, link seafloor environments to sediment texture, improve our understanding of the seafloor structure and sediment pathways, and demonstrate how ocean mapping resources can be useful beyond their original intent to maximize the footprint and scientific impact of a study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.