Precise control of capacitively coupled radiofrequency (CCRF) plasma reactors is required to achieve desired outcomes in surface functionalisation and material synthesis processes. This necessitates detailed mapping of the large process parameter space and a thorough understanding of spatial and temporal variations of the plasma throughout the reactor. These goals can only feasibly be achieved with accurate numerical modelling. Previous numerical studies of CCRF discharges have implemented a range of simplifying assumptions to improve numerical tractability, such as small electrode spacing, radial uniformity, fewer active species and simplified boundary conditions, while neglecting self‐bias formation. Although this approach is useful in developing the methodology for continuum plasma modelling, it poses challenges for direct comparison with experimental data and for understanding the behaviour of plasma processes employed in the surface treatment of large, complex objects, or the synthesis of nanoparticles. Here we report the development of a two‐dimensional axisymmetric continuum model for a CCRF reactor with a pure argon 13.56‐MHz discharge using the finite element method. The large electrode spacing and reactor design result in two distinct discharge regions and the formation of a strong DC self‐bias on the powered electrode. The plasma discharge is studied as the pressure is varied from 0.1 to 0.3 Torr, over the radiofrequency input power range of 25–100 W, which leads to consistent enhancements of the electron density and self‐bias. The impact of the electron energy distribution function (EEDF) on the discharge is assessed, with the assumption of a Druyvesteyn EEDF resulting in a bulk electron density and temperature of 3.4 × 1015 m−3 and 3.3 eV, respectively, compared with 8.1 × 1015 m−3 and 1.9 eV in the Maxwellian case. The asymmetric power distribution throughout the reactor is quantified to build a reduced domain model with a lower computational cost. The effect of an electrically floating parallel plate electrode is assessed, resulting in a 42% higher bulk plasma potential as compared with the grounded case. The inclusion of resonant and 2p excited states of argon is shown to have a major impact on the discharge dynamics, leading to an order of magnitude reduction in bulk electron density. This study proposes a robust numerical model of a CCRF argon plasma discharge to facilitate future simulations of more complex discharges with important implications in plasma surface engineering and synthesis of materials.
Surface-functionalized polymeric nanoparticles have advanced the field of nanomedicine as promising constructs for targeted delivery of molecular cargo as well as diagnostics and therapeutics. Conventionally, the functionalization of polymeric nanoparticles incorporates tedious wet chemical methods that require complex, multistep protocols. Surface-active plasma-polymerized nanoparticles (PPNs) produced by a dry, low-pressure plasma process can be easily functionalized with multiple ligands in a simple step. However, plasma polymerization remains limited by the challenge of efficient collection of PPNs from low-pressure plasma reactors. Here, we demonstrate a simple method to overcome this limitation by delaying the inflow of the polymer-forming precursor gas, acetylene, into a nitrogen and argon plasma discharge. We provide evidence that this cutting-edge development in the plasma polymerization method drastically enhances the collection yield of nanoparticles by 2.5-fold, compared to the simultaneous inflow of the gases. COMSOL Multiphysics simulations support our experimental data and provide insights into the role of pressure gradients in regulating the forces controlling the collection of the particles. Surface characterization data revealed that changing the sequence of the precursor gas inflow had no significant effect on the physicochemical properties of the nanoparticles, as critically important for theranostic applications. A model, green fluorescent protein, was successfully conjugated to the surface of the PPNs via a reagent-free, one-step incubation process that immobilized the biomolecule while retaining its biological activity. Cytotoxicity of the particles was assessed by a lactate dehydrogenase (LDH) assay at concentrations of up to 5 × 105 nanoparticles per cell. Despite their high concentrations, the nanoparticles were remarkably well tolerated by the cells, demonstrating their superb potential for in vivo cellular uptake. This study advances previous research on plasma-polymerized nanoparticles, introducing a low-waste synthesis method that achieves higher yields. This sustainable technology has important implications for the production of multifunctional nanoparticles for drug delivery, tumor targeting, and medical imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.