Excess lipid accumulation in non-adipose tissues is associated with insulin resistance, pancreatic -cell apoptosis and heart failure. Here, we demonstrate in cultured cells that the relative toxicity of two common dietary long chain fatty acids is related to channeling of these lipids to distinct cellular metabolic fates. Oleic acid supplementation leads to triglyceride accumulation and is well tolerated, whereas excess palmitic acid is poorly incorporated into triglyceride and causes apoptosis. Unsaturated fatty acids rescue palmitate-induced apoptosis by channeling palmitate into triglyceride pools and away from pathways leading to apoptosis. Moreover, in the setting of impaired triglyceride synthesis, oleate induces lipotoxicity. Our findings support a model of cellular lipid metabolism in which unsaturated fatty acids serve a protective function against lipotoxicity though promotion of triglyceride accumulation.
Cytotoxic accumulation of long chain fatty acids has been proposed to play an important role in the pathogenesis of diabetes mellitus and heart disease. To explore the mechanism of cellular lipotoxicity, we cultured Chinese hamster ovary cells in the presence of media supplemented with fatty acid. The saturated fatty acid palmitate, but not the monounsaturated fatty acid oleate, induced programmed cell death as determined by annexin V positivity, caspase 3 activity, and DNA laddering. De novo ceramide synthesis increased 2.4-fold with palmitate supplementation; however, this was not required for palmitate-induced apoptosis. Neither biochemical nor genetic inhibition of de novo ceramide synthesis arrested apoptosis in Chinese hamster ovary cells in response to palmitate supplementation. Rather, our data suggest that palmitate-induced apoptosis occurs through the generation of reactive oxygen species. Fluorescence of an oxidant-sensitive probe was increased 3.5-fold with palmitate supplementation indicating that production of reactive intermediates increased. In addition, palmitate-induced apoptosis was blocked by pyrrolidine dithiocarbamate and 4,5-dihydroxy-1,3-benzene-disulfonic acid, two compounds that scavenge reactive intermediates. These studies suggest that generation of reactive oxygen species, independent of ceramide synthesis, is important for the lipotoxic response and may contribute to the pathogenesis of diseases involving intracellular lipid accumulation.
Although neutral lipid storage droplets are ubiquitous in eukaryotic cells, very little is known about how their synthesis and turnover are controlled. Adipocyte differentiation-related protein (ADRP; also known as adipophilin) is found on the surface of lipid droplets in most mammalian cell types. To learn how ADRP affects lipid storage, we stably expressed the protein in human embryonic kidney 293 (HEK 293) cells, which express little endogenous ADRP. As expected, ADRP was targeted to the surface of lipid droplets and caused an increase in triacylglycerol (TAG) mass under both basal and oleate-supplemented conditions. At least part of the increased mass resulted from a 50% decrease in the rate of TAG hydrolysis in ADRPexpressing cells. Furthermore, ADRP expression increased the fraction of total cellular TAG that was stored in lipid droplets. ADRP expression induced a striking decrease in the association of adipose triglyceride lipase (ATGL) and mannose-6-phosphate receptor tail-interacting protein of 47 kDa with lipid droplets and also decreased the lipid droplet association of several other unknown proteins. Transient expression of ADRP in two other cell lines also reduced the lipid droplet association of catalytically inactive ATGL. We conclude that the reduced lipid droplet association of ATGL and/or other lipases may explain the decrease in TAG turnover observed in ADRP-expressing HEK 293 cells. Eukaryotes store lipid in cytosolic lipid droplets, which consist of neutral lipid cores surrounded by phospholipid monolayers (1-3). In mammals, lipid droplets are most abundant in adipose tissue, where stored triacylglycerol (TAG) provides the primary energy reserve for the organism. Lipid droplets in steroidogenic cells contain cholesteryl esters used in the synthesis of steroid hormones. Most other mammalian cells contain smaller lipid droplets, whose function remains unclear. They may serve as local energy reserves or sources of lipid for membrane synthesis. Furthermore, they may protect cells from the harmful effects of excess lipid accumulation by sequestering toxic lipid species away from pathways that lead to cell death (4, 5).Mechanisms controlling the synthesis and turnover of lipid droplets are only partially understood. According to one model of lipid droplet biogenesis, newly synthesized neutral lipids accumulate inside the endoplasmic reticulum membrane, forming a disk that eventually buds into the cytoplasm surrounded by an endoplasmic reticulumderived phospholipid monolayer (2, 6). Conversely, lipid droplet turnover occurs via the hydrolysis of stored neutral lipids by cytosolic lipases. Much of what we know about the regulation of lipolysis stems from studies in adipocytes. In response to hormone stimulation, protein kinase A phosphorylates two key substrates: hormone-sensitive lipase (HSL) (7) and perilipins (8, 9). Phosphorylation of HSL stimulates both its activity and its association with lipid droplets, in a manner that depends on perilipins.Perilipins regulate TAG hydrolysis in two...
SUMMARY Lipotoxicity is a metabolic stress response implicated in the pathogenesis of diabetes complications and has been shown to involve lipid-induced oxidative stress. To elucidate the molecular mechanisms of lipotoxicity, we used retroviral promoter trap mutagenesis to isolate a cell line that is resistant to lipotoxic and oxidative stress. We show that loss of three box C/D small nucleolar RNAs (snoRNAs) encoded in the ribosomal protein L13a (rpL13a) locus is sufficient to confer resistance to lipotoxic and oxidative stress in vitro and prevents the propagation of oxidative stress in vivo. Our results provide evidence for a previously unappreciated, non-canonical role for box C/D snoRNAs as regulators of metabolic stress response pathways in mammalian cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.