Based on a weighted version of the bijection between Dyck paths and 2-Motzkin paths, we find combinatorial interpretations of two identities related to the Narayana polynomials and the Catalan numbers. These interpretations answer two questions posed recently by Coker.
We study the generating function for the number of involutions on n letters containing exactly r ≥ 0 occurrences of 3412. It is shown that finding this function for a given r amounts to a routine check of all involutions on 2r + 1 letters.
We obtain a characterization of $(321, 3\bar{1}42)$-avoiding permutations in terms of their canonical reduced decompositions. This characterization is used to construct a bijection for a recent result that the number of $(321,3\bar{1}42)$-avoiding permutations of length $n$ equals the $n$-th Motzkin number, due to Gire, and further studied by Barcucci, Del Lungo, Pergola, Pinzani and Guibert. Similarly, we obtain a characterization of $(231,4\bar{1}32)$-avoiding permutations. For these two classes, we show that the number of descents of a permutation equals the number of up steps on the corresponding Motzkin path. Moreover, we find a relationship between the inversion number of a permutation and the area of the corresponding Motzkin path.
Riordan paths are Motzkin paths without horizontal steps on the x-axis. We establish a correspondence between Riordan paths and (321, 3142)-avoiding derangements. We also present a combinatorial proof of a recurrence relation for the Riordan numbers in the spirit of the Foata-Zeilberger proof of a recurrence relation on the Schröder numbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.