To date, the endogenous ligands described for cannabinoid receptors have been derived from membrane lipids. To identify a peptide ligand for CB 1 cannabinoid receptors, we used the recently described conformation-state sensitive antibodies and screened a panel of endogenous peptides from rodent brain or adipose tissue. This led to the identification of hemopressin (PVNFKFLSH) as a peptide ligand that selectively binds CB 1 cannabinoid receptors. We find that hemopressin is a CB 1 receptor-selective antagonist, because it is able to efficiently block signaling by CB 1 receptors but not by other members of family A G protein-coupled receptors (including the closely related CB2 receptors). Hemopressin also behaves as an inverse agonist of CB 1 receptors, because it is able to block the constitutive activity of these receptors to the same extent as its well characterized antagonist, rimonabant. Finally, we examine the activity of hemopressin in vivo using different models of pain and find that it exhibits antinociceptive effects when administered by either intrathecal, intraplantar, or oral routes, underscoring hemopressin's therapeutic potential. These results represent a demonstration of a peptide ligand for CB 1 cannabinoid receptors that also exhibits analgesic properties. These findings are likely to have a profound impact on the development of novel therapeutics targeting CB 1 receptors.
It has been previously shown that besides its classical role in blood pressure control the renin-angiotensin system, mainly by action of angiotensin II on the AT(1) receptor, exerts pro-inflammatory effects such as by inducing the production of cytokines. More recently, alternative pathways to this system were described, such as binding of angiotensin-(1-7) to receptor Mas, which was shown to counteract some of the effects evoked by activation of the angiotensin II-AT(1) receptor axis. Here, by means of different molecular approaches we investigated the role of angiotensin-(1-7) in modulating inflammatory responses triggered in mouse peritoneal macrophages. Our results show that receptor Mas transcripts were up-regulated by eightfold in LPS-induced macrophages. Interestingly, macrophage stimulation with angiotensin-(1-7), following to LPS exposure, evoked an attenuation in expression of TNF-α and IL-6 pro-inflammatory cytokines; where this event was abolished when the receptor Mas selective antagonist A779 was also included. We then used heterologous expression of the receptor Mas in HEK293T cells to search for the molecular mechanisms underlying the angiotensin-(1-7)-mediated anti-inflammatory responses by a kinase array; what suggested the involvement of the Src kinase family. In LPS-induced macrophages, this finding was corroborated using the PP2 compound, a specific Src kinase inhibitor; and also by Western blotting when we observed that Ang-(1-7) attenuated the phosphorylation levels of Lyn, a member of the Src kinase family. Our findings bring evidence for an anti-inflammatory role for angiotensin-(1-7) at the cellular level, as well as show that its probable mechanism of action includes the modulation of Src kinases activities.
BACKGROUND AND PURPOSEMounting evidence implicates matrix metalloproteinase (MMP) in the vascular dysfunction and remodelling associated with hypertension. We tested the hypothesis that treatment with pyrrolidine dithiocarbamate (PDTC), which interferes with NF-kB-induced MMPs gene transcription, could exert antihypertensive effects, prevent MMP-2 and MMP-9 up-regulation, and protect against the functional alterations and vascular remodelling of two-kidney, one clip (2K1C) hypertension. EXPERIMENTAL APPROACHSham-operated or hypertensive rats were treated with vehicle or PDTC (100 mg·Kg) by gavage for 8 weeks. Systolic blood pressure (SBP) was monitored weekly. Aortic rings were isolated to assess endothelium-dependent relaxations. Quantitative morphometry of structural alterations of the aortic wall was carried out in haematoxylin/eosin sections. Formation of vascular reactive oxygen species (ROS), and inducible (i) NOS and phosphorylated-p65 NF-kB subunit expression were measured in the aortas. MMP-2 and MMP-9 aortic levels and gelatinolytic activity were determined by gelatin and in situ zymography and by immunofluorescence. KEY RESULTSTreatment with PDTC attenuated the increases in SBP and prevented the endothelial dysfunction associated with 2K1C hypertension. Moreover, PDTC reversed the vascular aortic remodelling, the increases in aortic ROS levels and in iNOS and phosphorylated-p65 NF-kB expression found in 2K1C rats. These effects were associated with attenuation of 2K1C up-regulation of aortic MMP-2 and MMP-9 levels and gelatinolytic activity. CONCLUSION AND IMPLICATIONSThese findings suggest that PDTC down-regulates vascular MMPs and ameliorates vascular dysfunction and remodelling in renovascular hypertension, thus providing evidence supporting the suggestion that PDTC is probably a good candidate to be used to treat hypertension.
The renin-angiotensin (Ang) system is involved in maintaining cardiovascular function by regulating blood pressure and electrolyte homeostasis. More recently, alternative pathways within the renin-angiotensin system have been described, such as the ACE-2/Ang-(1-7)/Mas axis, with opposite effects to the ones of the ACE/Ang-II/AT1 axis. Correspondingly, our previous work reported that Ang-(1-7) via its receptor Mas inhibits the mRNA expression of the proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor-α increased by lipopolysaccharide (LPS) in mouse peritoneal macrophages. These data led us to investigate the functional role of the Ang-(1-7)/Mas axis in an in vivo LPS model. In this work, we present evidence that Ang-(1-7) via Mas significantly reduced the LPS-increased production of circulating cytokines, such as IL-6, IL-12, and CXCL-1. This inhibitory effect was mediated by Mas because it was not detectable in Mas-deficient (Mas) mice. Accordingly, IL-6, CXCL-1, and CXCL-2 levels were higher after LPS treatment in the absence of Mas. Mas mice were less resistant to LPS-induced endotoxemia, their survival rate being 50% compared with 95% in wild-type mice. Telemetric analyses showed that Mas mice presented more pronounced LPS-induced hypothermia with a 3°C lower body temperature compared with wild-type mice. Altogether, our findings suggest that Ang-(1-7) and Mas inhibit LPS-induced cytokine production and hypothermia and thereby protect mice from the fatal consequences of endotoxemia.
The involvement and relevance of the renin–angiotensin system have been established clearly in cardiovascular diseases, and renin–angiotensin system involvement has also been investigated extensively in the central nervous system. Angiotensin II acts classically by binding to the AT 1 and AT 2 receptors. However, other pathways within the renin–angiotensin system have been described more recently, such as one in which angiotensin-(1–7) (Ang-(1–7)) binds to the receptor Mas. In the central nervous system specifically, it has been reported that this heptapeptide is involved in learning and memory processes that occur in central limbic regions, such as the hippocampus. Therefore, this prompted us to investigate the possible role of the Ang-(1–7)–receptor Mas pathway in epileptic seizures, which are also known to recruit limbic areas. In the present study, we show that Ang-(1–7) is the main metabolite of angiotensin I in rat hippocampi, and, strikingly, that thimet oligopeptidase is the main enzyme involved in the generation of Ang-(1–7). Furthermore, elevations in the levels of thimet oligopeptidase, Ang-(1–7), and of receptor Mas transcripts are observed in chronically stimulated epileptic rats, which suggest that the thimet oligopeptidase–Ang-(1–7)–receptor Mas axis may have a functional relevance in the pathophysiology of these animals. In summary, our data, which describe a new preferential biochemical pathway for the generation of Ang-(1–7) in the central nervous system and an increase in the levels of various elements of the related thimet oligopeptidase–Ang-(1–7)–receptor Mas pathway, unveil potential new roles of the renin–angiotensin system in central nervous system pathophysiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.