B-cell lymphoma-2 (BCL-2), an antiapoptotic protein often dysregulated in B-cell lymphomas, promotes cell survival and provides protection from stress. A recent phase I first-in-human study of the BCL-2 inhibitor venetoclax in non-Hodgkin lymphoma showed an overall response rate of 44%. These promising clinical results prompted our examination of the biological effects and mechanism of action underlying venetoclax activity in aggressive B-cell lymphoma, including mantle cell lymphoma (MCL) and diffuse large B-cell lymphoma (DLBCL). MCL and DLBCL cell lines, primary patient samples, and patient-derived xenograft (PDX) models were utilized to examine venetoclax efficacy. Furthermore, the mechanisms underlying venetoclax response and the development of venetoclax resistance were evaluated using proteomics analysis and Western blotting. Potential biomarkers linked to venetoclax activity and targeted combination therapies that can augment venetoclax response were identified. We demonstrate that DLBCL and MCL cell lines, primary patient samples, and PDX mouse models expressing high BCL-2 levels are extremely sensitive to venetoclax treatment. Proteomics studies showed that venetoclax substantially alters the expression levels and phosphorylation status of key proteins involved in cellular processes, including the DNA damage response, cell metabolism, cell growth/survival, and apoptosis. Short- and long-term exposure to venetoclax inhibited PTEN expression, leading to enhanced AKT pathway activation and concomitant susceptibility to PI3K/AKT inhibition. Intrinsic venetoclax-resistant cells possess high AKT activation and are highly sensitive to PI3K/AKT inhibition. These findings demonstrate the on-target effect of venetoclax and offer potential mechanisms to overcome acquired and intrinsic venetoclax resistance through PI3K/AKT inhibition. .
Purpose Patients with B-cell lymphomas often relapse after frontline therapy, and novel therapies are urgently needed to provide long-term remission. We established B-cell lymphoma PDX (patient-derived xenograft) models to assess their ability to mimic tumor biology and to identify B-cell lymphoma patient treatment options. Experimental Design We established the PDX models from 16 patients with diffuse large B-cell lymphoma, mantle cell lymphoma, follicular lymphoma, marginal zone lymphoma, or Burkitt’s lymphoma by inoculating the patient tumor cells into a human bone chip implanted into mice. We subjected the PDX models to histopathological and phenotypical examination, sequencing, and drug efficacy analysis. Primary and acquired resistance to ibrutinib, an oral covalent inhibitor of Bruton’s tyrosine kinase, were investigated to elucidate the mechanisms underlying ibrutinib resistance and to identify drug treatments to overcome resistance. Results The PDXs maintained the same biological, histopathological, and immunophenotypical features, retained similar genetic mutations and produced comparable drug responses with the original patient tumors. In the acquired ibrutinib-resistant PDXs, PLC-γ2, p65, and Src were down-regulated; however, a PI3K signaling pathway member was up-regulated. Inactivation of the PI3K pathway with the inhibitor idelalisib in combination with ibrutinib significantly inhibited the growth of the ibrutinib-resistant tumors. Furthermore, we used a PDX model derived from a clinically ibrutinib-relapsed patient to evaluate various therapeutic choices, ultimately eliminating the tumor cells in the patient’s peripheral blood. Conclusions Our results demonstrate that the B-cell lymphoma PDX model is an effective system to predict and personalize therapies and address therapeutic resistance in B-cell lymphoma patients.
Mutations and epigenetic alterations are key events in transforming normal cells to cancer cells. Mantle cell lymphoma (MCL), a non-Hodgkin's lymphoma of the B-cell, is an aggressive malignancy with poor prognosis especially for those patients who are resistant to the frontline drugs. There is a great need to describe the molecular basis and mechanism of drug resistance in MCL to develop new strategies for treatment. We reviewed frequent somatic mutations and mutations involving the B-cell pathways in MCL and discussed clinical trials that attempted to disrupt these gene pathways and/or epigenetic events. Recurrent gene mutations were discussed in the light of prognostic and therapeutic opportunity and also the challenges of targeting these lesions. Mutations in the ATM, CCND1, TP53, MLL2, TRAF2 and NOTCH1 were most frequently encountered in mantle cell lymphoma. Translational models should be built that would assess mutations longitudinally to identify important compensatory, pro-survival and anti-apoptic pathways and actionable genetic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.