Current antidepressants are clinically effective only after several weeks of administration. Here, we show that serotonin(4) (5-HT(4)) agonists reduce immobility in the forced swimming test, displaying an antidepressant potential. Moreover, a 3 day regimen with such compounds modifies rat brain parameters considered to be key markers of antidepressant action, but that are observed only after 2-3 week treatments with classical molecules: desensitization of 5-HT(1A) autoreceptors, increased tonus on hippocampal postsynaptic 5-HT(1A) receptors, and enhanced phosphorylation of the CREB protein and neurogenesis in the hippocampus. In contrast, a 3 day treatment with the SSRI citalopram remains devoid of any effect on these parameters. Finally, a 3 day regimen with the 5-HT(4) agonist RS 67333 was sufficient to reduce both the hyperlocomotion induced by olfactory bulbectomy and the diminution of sucrose intake consecutive to a chronic mild stress. These findings point out 5-HT(4) receptor agonists as a putative class of antidepressants with a rapid onset of action.
Current antidepressants still display unsatisfactory efficacy and a delayed onset of therapeutic action. Here we show that the pharmacological blockade of serotonin 7 (5-HT 7 ) receptors produced a faster antidepressant-like response than the commonly prescribed antidepressant fluoxetine. In the rat, the selective 5-HT 7 receptor antagonist SB-269970 counteracted the anxiogenic-like effect of fluoxetine in the open field and exerted an antidepressant-like effect in the forced swim test. In vivo, 5-HT 7 receptors negatively regulate the firing activity of dorsal raphe 5-HT neurons and become desensitized after long-term administration of fluoxetine. In contrast with fluoxetine, a 1-week treatment with SB-269970 did not alter 5-HT firing activity but desensitized cell body 5-HT autoreceptors, enhanced the hippocampal cell proliferation, and counteracted the depressive-like behavior in olfactory bulbectomized rats. Finally, unlike fluoxetine, early-life administration of SB-269970, did not induce anxious/depressive-like behaviors in adulthood. Together, these findings indicate that the 5-HT 7 receptor antagonists may represent a new class of antidepressants with faster therapeutic action.
Studies showing psychostimulant-like effects of exogenous neurotensin (NT) infused into the ventral tegmental area (VTA) prompted us to examine the role in the VTA of the endogenous NT in behavioral sensitization to amphetamine. Rats were sensitized to amphetamine by means of a subcutaneous amphetamine (1 mg/kg) injection, and the same dose was injected 7 days later to evaluate the expression of sensitization. The highly selective NT-receptor antagonist SR 142948A was injected into the VTA prior to the first and/or second amphetamine administration. SR 142948A (5 pmol/side) given before the first amphetamine exposure prevented the induction of behavioral sensitization, but did not alter the acute response to amphetamine. SR 142948A given with the second amphetamine administration did not affect the expression of behavioral sensitization. In contrast to administration into the VTA, intraperitoneal administration of SR 142948A (0.03, 0.1, or 0.3 mg/kg) had no detectable effect on the induction of amphetamine sensitization. These results suggest that activation of VTA NT receptors by endogenous NT may contribute to the neuroadaptations underlying behavioral sensitization to amphetamine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.